

ISO Standard Compliant Ball Screw

EBB/EPB

Compliant with Mounting Dimensions of ISO 3408-2 Precision grade of ISO 3408-3

Model EBB can be a select of screw shaft and nut assembly products or screw shaft and nut as separate components.

Structure and Features

In the ISO standard compliant Ball Screw, balls under a load roll in the raceway cut between the screw shaft and the nut while receiving the axial load, travel along the groove of a deflector embedded inside the nut to the adjacent raceway and then circulate back to the loaded area. Thus, the balls perform infinite rolling motion.

Two types of nuts are available: model EBB of oversized-ball preload type or non-preloaded type, and model EPB of offset preloaded type.

[Compact]

This Ball Screw is compactly built. Because of an internal circulation system using deflectors, the outer diameter of the nut is 70 to 80% of the conventional double nut and the overall nut length is only 60 to 80% of the return pipe nut.

[Compliant with a ISO standard]

Compliant with Mounting Dimensions of ISO 3408-2 and Precision grade of ISO 3408-3.

EBB/EPB Outline

20

25

32

40

50

63

● : EBB /■ : EPB

_

_

2

_

_

_

Specification

Preload methods

Precision Grade

The precision grades of model EBB / EPB are controlled in accordance with the ISO 3408-3

Model No.	Precision Grades
EBB	Cp5, Ct7
EPB	Cp5

Axial Clearance

Axial clearance of model EBB is as shown in the table below. Axial clearance of model EPB is only G0 clearance.

Unit : mm

Clearance Symbol	G0	G1	G2	G3
Axial Clearance	0 or less	0 to 0.01	0 to 0.02	0 to 0.05

Available Axial Clearance

Model EBB / EPB precision grades and axial clearance combinations are shown in the table below.

Complete Assembly

Precision Grade	Cp5	Ct7
EBB	G0 G1	G0 G2
EPB	G0	—

Separate Components

Precision Grade	Cp5	Ct7
EBB	G	3

Limitations of Screw Shaft Length

		Unit : mm	
Precisi	on Class	Cp5	Ct7
	16	1500	2000
E E E	20	2000	2500
ter (25	2000	4000
ame	32	2000	4000
f dia	40	2000	4000
Shaf	50	2000	4000
55	63	2000	4000

Model number

coding

Model number coding for Complete Assembly

Model number	Lubricator QZ	Seal symbol	Clearance symbol	Shaft length	Accuracy Symbol	Shaf syn	t end 1bol
EBB3205-6	QZ ※1 ※5	RR WW ※2 ※5	G0 G1 G2 G3	+650L	Cp5 R Ct7 R	- J1 - J2 - J3 - H1 - H2 - H3 ※3	К ※4

Example)

EBB3205-6QZRRG0+650LCp5R-J1K

Note) The ball screw nut flange faces the fixed side unless otherwise specified. If desiring the flange to face the supported side, add symbol G in the end of the Ball Screw model number when placing an order.

(Example) EPB2505-5RRGO+420LCp5R-J2KG

Model number coding for Separate Components

Ball screw nut	
Nut Model number	Seal symbol
EBB3205-6	RR ※2

Ball screw shaft

Dull Serew Shul				
Shaft Model number	Shaft length	Accuracy Symbol	Shaf syn	t end 1bol
TS3205 ※6	+650L	Cp5 R Ct7 R	- J1 - J2 - J3 - H1 - H2 - H3 ※3	К ※4

Example)

EBB3205-6RR

Example)

TS3205+650LCt7R-H1

- %1 No symbol : Without Lubricator QZ
- 2 No symbol : Without Labyrinth Seal RR (Wiper ring WW)
- 3 No symbol : Without Shaft end machining
- %4 No symbol : Without Shaft end machinng
- %5 Lubricator QZ and Wiper ring WW are options that apply to Complete Assembly.

%6 Symbol "TS" is screw shaft model number.

Shape of the Shaft Ends

Type of Recommended Shape of the Shaft Ends

Mounting method	Symbol	Shaft End Shape	Support Unit
	H1		FK
Fixed	J1		BK
	H2		FK
	J2		BK
	H3		FK
	J3		BK
Supported	К		FF BF
Free	No Symbole		_

4

Dimensions

Hole type 1 (Model EBB1605 to 3210)

Hole type 2 (Model EBB4005 to 6320)

	Screw shaft		Ball center-to-	Thread	Thread No. of		ad rating	Rigidity
Model No.	outer diameter	Lead	center diameter	minor diameter	load Circuits	Са	C₀a	к
	d	Ph	dp	dc	Rows × turns	kN	kN	N/µm
EBB 1605-4	16	5	16.75	13.1	4×1	11.9	17.4	210
EBB 2005-3	20	5	20.5	17.1	3×1	10.6	17.3	200
EBB 2505-3	25	5	25.5	22.1	3×1	12.1	22.6	250
EBB 2510-3	25	10	26.0	21.6	3×1	15.9	27	250
EBB 2510-4	25	10	26.0	21.6	4×1	20.9	37.6	330
EBB 3205-3	32	5	32.75	29.2	3×1	13.9	30.2	300
EBB 3205-4	32	5	32.75	29.2	4×1	17.8	40.3	400
EBB 3205-6	32	5	32.75	29.2	6×1	25.1	60.4	600
EBB 3210-3	32	10	33.75	26.4	3×1	32.1	52.2	300
EBB 3210-4	32	10	33.75	26.4	4×1	41.3	69.7	390
EBB 4005-6	40	5	40.75	37.1	6×1	26.6	77.5	716
EBB 4010-3	40	10	41.75	34.4	3×1	37.3	69.3	380
EBB 4010-4	40	10	41.75	34.4	4×1	47.6	92.4	500
EBB 4010-6	40	10	41.75	34.4	6×1	67.5	138.6	750
EBB 4020-3	40	20	41.75	34.7	3×1	36.8	69.3	750
EBB 5005-6	50	5	50.75	47.1	6×1	30.9	99.1	940
EBB 5010-4	50	10	51.75	44.4	4×1	54.3	120.5	610
EBB 5020-3	50	20	52.25	43.6	3×1	55.3	108.8	470
EBB 6310-6	63	10	64.75	57.7	6×1	87.9	242.1	1140
EBB 6320-3	63	20	65.7	56.0	3×1	104.4	229.3	1470

Note) Basic Dynamic Load Rating (Ca) of the accuracy Ct7 is 0.9 Ca.

Unit : mm

Nut dimensions											
Outer	Flange	Overall							Greasing	Nut	Shaft
diameter	diameter	length							hole	mass	mass
D	D1	L ₁	Н	B1	B ₂	PCD	d1	Tw	А	kg	kg/m
28	48	55	10	40	12	38	5.5	20	M6×1	0.21	1.25
36	58	50	10	35	12	47	6.6	22	M6×1	0.31	2.06
40	62	50	10	35	12	51	6.6	24	M6×1	0.34	3.35
40	62	80	10	65	18	51	6.6	24	M6×1	0.51	3.45
40	62	85	10	70	18	51	6.6	24	M6×1	0.53	3.45
50	80	52	12	35	12	65	9	31	M6×1	0.59	5.67
50	80	57	12	40	12	65	9	31	M6×1	0.63	5.67
50	80	67	12	50	12	65	9	31	M6×1	0.71	5.67
50	80	82	12	65	18	65	9	31	M6×1	0.76	4.98
50	80	94	12	77	18	65	9	31	M6×1	0.85	4.98
63	93	70	14	51	12	78	9	35	M8×1	1.13	9.6
63	93	84	14	65	18	78	9	35	M8×1	1.23	8.22
 63	93	94	14	75	18	78	9	35	M8×1	1.35	8.22
63	93	114	14	95	18	78	9	35	M8×1	1.59	8.22
63	93	129	14	105	27	78	9	35	M8×1	1.91	9.03
75	110	75	16	54	12	93	11	42.5	M8×1	1.55	14.59
75	110	96	16	75	25	93	11	42.5	M8×1	1.9	13.38
75	110	134	16	108	27	93	11	42.5	M8×1	2.59	13.8
90	125	119	18	96	18	108	11	47.5	M8×1	2.87	21.93
95	135	136	18	108	27	115	13.5	50	M8×1	4.11	21.57

Note) The rigidity values in the table represent spring constants each obtained from the load and the Elastic Deformation finish when providing an axial load 24% of the basic dynamic load rating (Ca).

These values do not include the rigidity of the components related to mounting the nut. Therefore, it is normally appropriate to regard roughly 80% of the value in the table as the actual value.

If the axial load (Fa) is not 0.24 Ca, the rigidity value ($K_{\!\scriptscriptstyle N}$) is obtained from the following equation.

$$K_{N} = K \left(\frac{Fa}{0.24 \cdot Ca} \right)^{\frac{1}{3}}$$

K: Rigidity value in the dimensional table.

6

Dimensions

Hole type 1 (Model EPB1605 to 3210)

	Screw shaft		Ball center-to-	Thread	No. of	Basic lo	ad rating	Rigidity	
Model No.	outer diameter	Lead	center diameter	minor diameter	load Circuits	Са	C₀a	К	
	d	Ph	dp	dc	Rows × turns	kN	kN	N/µm	
EPB 1605-6	16	5	16.75	13.1	3×1	9.3	13.1	315	
EPB 2005-6	20	5	20.5	17.1	3×1	10.6	17.3	396	
EPB 2505-6	25	5	25.5	22.1	3×1	12.1	22.6	491	
EPB 2510-4	25	10	26.0	21.6	2×1	11.3	18.0	331	
EPB 3205-6	32	5	32.75	29.2	3×1	13.9	30.2	616	
EPB 3205-8	32	5	32.75	29.2	4×1	17.8	40.3	811	
EPB 3210-6	32	10	33.75	26.4	3×1	32.1	52.2	602	
EPB 4005-6	40	5	40.75	37.1	3×1	15.4	38.8	751	
EPB 4010-6	40	10	41.75	34.4	3×1	37.3	69.3	756	
EPB 4010-8	40	10	41.75	34.4	4×1	47.6	92.4	995	
EPB 5010-8	50	10	51.75	44.4	4×1	54.3	120.5	1234	
EPB 6310-8	63	10	64.75	57.7	4×1	61.9	160.7	1550	

Note) Basic Dynamic Load Rating (Ca) of the accuracy Ct7 is 0.9 Ca.

Unit : mm

Outer diameter	Flange diameter	Overall length	Н	B1	B2	PCD	d1	Tw	Greasing hole	Nut mass	Shaft mass
 D	D ₁	L ₁							А	kg	kg/m
28	48	65	10	50	12	38	5.5	20	M6×1	0.25	1.25
 36	58	66	10	51	12	47	6.6	22	M6×1	0.42	2.06
40	62	66	10	51	12	51	6.6	24	M6×1	0.45	3.35
40	62	85	10	70	18	51	6.6	24	M6×1	0.56	3.45
50	80	67	12	50	12	65	9	31	M6×1	0.77	5.67
50	80	78	12	61	12	65	9	31	M6×1	0.86	5.67
50	80	112	12	95	18	65	9	31	M6×1	1.03	4.98
 63	93	70	14	51	12	78	9	35	M8×1	1.23	9.06
63	93	114	14	95	18	78	9	35	M8×1	1.70	8.22
63	93	138	14	119	18	78	9	35	M8×1	1.99	8.22
75	110	140	16	119	18	93	11	42.5	M8×1	2.77	13.38
 90	125	142	18	119	18	108	11	47.5	M8×1	3.74	21.93

Note) The rigidity values in the table represent spring constants each obtained from the load and the elastic deformation when providing a preload 8% of the basic dynamic load rating (Ca) and applying an axial load three times greater than the preload. These values do not include the rigidity of the components related to mounting the nut. Therefore, it is normally appropriate to regard roughly 80% of the value in the table as the actual value.

If the applied preload (Fa_0) is not 0.08 Ca, the rigidity value (K_{\mbox{\tiny N}}) is obtained from the following equation.

K: Rigidity value in the dimensional table.

 $K_{N} = K \left(\frac{Fa_{0}}{0.08 \cdot Ca}\right)^{\frac{1}{3}}$

8

Shape J (J1, J2 and J3) (For Support Unit Model BK)

Ball Screw	d	А	В	E	F	Metric sc thread	rew I	Width	acro:	ss flat	SI	hape	J2	Shap	be J3	Support Unit
Model No.						М	S	J	N	Н	G N9	T +0.1	Ρ	R	Ρ	Model No.
EBB/EPB1605	16	12	10	39	15	M12×1	14	13	6	8	3	1.8	12	9.5	12	BK12
EBB/EPB2005	20	15	12	40	20	M15×1	12	16	8	9	4	2.5	16	11.3	16	BK15
EBB/EPB25	25	17	15	53	23	M17×1	17	18	7	10	5	3	21	14.3	21	BK17
EBB/EPB32	32	20	17	53	25	M20×1	15	21	8	11	5	3	21	16	21	BK20
EBB/EPB40	40	30	25	72	38	M30×1.5	25	32	10	15	8	4	32	23.5	32	BK30
EBB/EPB50	50	40	35	98	50	M40×1.5	35	41	14	19	10	5	45	33	45	BK40

Shape H (H1, H2 and H3) (For Support Unit Model FK)

Ball Screw	d	A	В	E	F	Metric scr thread	rew	Wid	th ac flat	ross	Sh	ape l	H2	Shap	e H3	Suppo pos	ort Unit ition	Support Unit
Model No.						М	S	J	Ν	Н	G N9	T +0.1	Ρ	R	Р	K ₁	K ₂	Model No.
EBB/EPB1605	16	12	10	36	15	M12×1	11	13	6	8	3	1.8	12	9.5	12	0.5	-0.5	FK12
EBB/EPB2005	20	15	12	49	20	M15×1	13	16	6	9	4	2.5	16	11.3	16	4	2	FK15
EBB/EPB25	25	15	12	49	20	M15×1	13	18	7	10	4	2.5	16	11.3	16	4	2	FK15
EBB/EPB32	32	20	17	64	25	M20×1	17	27	9	13	5	3	21	16	21	1	-3	FK20
EBB/EPB40	40	30	25	72	38	M30×1.5	25	32	10	15	8	4	32	23.5	32	-3	-9	FK30

Note) Support Units are designed to have dimensions so that combinations of models FK and FF or models BK and BF are used on the same shaft.

If desiring the shaft end to be machined at THK, add the shape symbol in the end of the Ball Screw model number. (Example) TS2505+500L-J2K (Shape J2 on the fixed side; shape K on the supported side)

For the perpendicularity of the end face of the bearing, refer to JIS B 1192-1997.

Note) The ball screw nut flange faces the fixed side unless otherwise specified.

If desiring the flange to face the supported side, add symbol G in the end of the Ball Screw model number when placing an order.

(Example) EBB2510-4RRG0+650LCp5R-J1KG

Unit : mm

Unit : mm

Support side Shaft Ends

Type of Recommended Shape of the Shaft Ends Shape K (For Support Unit Model BF, FF)

Shape K

Unit: mm

Ball Screw Model No.	d	А	E	В	F	G	Support Unit Model No.
EBB/EPB1605	16	10	11	9.6	9.15	1.15	BF12/FF12
EBB/EPB2005	20	15	13	14.3	10.15	1.15	BF15/FF15
	25	15	13	14.3	10.15	1.15	BF15/FF15
	20	17	16	16.2	13.15	1.15	* BF17
	20	20	16	19	13.35	1.35	** BF20
	32	20	19	19	15.35	1.35	** FF20
EBB/EPB40	40	30	21	28.6	17.75	1.75	BF30/FF30
EBB/EPB50	50	40	23	38	19.95	1.95	BF40

Note) Support Units are designed to have dimensions so that combinations of models FK and FF or models BK and BF are used on the same shaft.

If desiring the shaft end to be machined at THK, add the shape symbol in the end of the Ball Screw model number.

 * When model BK17 (shaft end shape: J) is used on the fixed side for a Ball Screw with a

shaft outer diameter of 25 mm, the shaft end shape on the supported side is that for model BF17.

** When placing an order, be sure to specify the model number of the Support Unit to be used.

(Example)

TS2505+500L-H2K (Shape H2 on the fixed side; shape K on the supported side) For the perpendicularity of the end face of the bearing, refer to JIS B 1192-1997.

With the support unit model BF / FF assembled to shape K

Model BF

Model FF

Model FF

Options

The options that apply to Complete Assembly

For EBB/EPB series, QZ Lubricators and Wiper Rings for Ball Screws are available as options. QZ Lubricators which contains a highly oil impregnated fi ber net are designed for long term maintenance free operation. Contact type seal, Wiper Ring W, excels in foreign material removal.

Dimensions of the Ball Screw Nut Attached with Wiper Ring W and QZ Lubricator

With WW (without QZ)

Note) The dimension L indicates the length of the nut with WW.

Unit : mm

Model No.	L	QWL	QWD	AL
EPB 1605-6	65	25	27	115
EPB 2005-6	66	26.5	33	114
EPB 2505-6	66	28	39	117
EPB 2510-4	85	32	39	144
EPB 3205-6	67	35	45	132
EPB 3205-8	78	35	45	143
EPB 3210-6	112	40	49	187
EPB 4005-6	70	28.5	61	122
EPB 4010-6	114	44	61	197
EPB 4010-8	138	44	61	221
EPB 5010-8	140	37	71	209
EPB 6310-8	142	39	84	215

Note) The dimension L indicates the length of the nut with WW.

Fixed side Support Unit Line-up

Model BK	Model FK

Support side Support Unit Line-up

Model BF	Model FF

		Axial direction									
Support Unit Model No.	Bearing	Basic dynamic load rating Ca (kN)	Permissible Load (kN) ¹⁾	Rigidity (N/μm)							
BK12/FK12	7001 equivalent (DF P5)	6.66	3.25	88							
BK15/FK15	7002 equivalent (DF P5)	7.6	4	100							
BK17	7203 equivalent (DF P5)	13.7	5.85	125							
BK20	7004 equivalent (DF P5)	12.7	7.55	140							
FK20	7204 equivalent (DF P5)	17.9	9.5	170							
BK30/FK30	7206 equivalent (DF P5)	28	16.3	195							
BK40	7208 equivalent (DF P5)	44.1	27.1	270							

		Radial dir	ection
Support Unit Model No.	Bearing	Basic dynamic load rating C (kN)	Basic static load rating C₀ (kN)
BF12/FF12	6000ZZ	4.55	1.96
BF15/FF15	6002ZZ	5.6	2.84
BF17	6203ZZ	9.6	4.6
BF20	6004ZZ	9.4	5.05
FF20	6204ZZ	12.8	6.65
BF30/FF30	6206ZZ	19.5	11.3
BF40	6208ZZ	29.1	17.8

¹⁾Permissible load indicates the static permissible load.

Model BK Square Type Support Unit on the Fixed Side

Part No.	Part name	No. of units
1	Housing	1
2	Bearing	1 set
3	Holding lid	1
4	Collar	2
5	Seal	2
6	Lock Nut	1
7	Hexagonal socket-head setscrew (with a set piece)	1

Unit : mm

Support Unit Model No.	d	L	L ₁	L ₂	L ₃	В	н	b ± 0.02	h1 ±0.02	B1	H1	Р	C1	C2	d1	d2	h	М	т	Mass (kg)	Ball Screw Model No.
BK12	12	25	5	29	5	60	43	30	22	35	32.5	46	13	6	6.6	10.8	1.5	М3	19	0.41	EBB/EPB1605
BK15	15	27	6	32	6	70	48	35	28	40	38	54	15	6	6.6	11	6.5	M3	22	0.57	EBB/EPB2005
BK17	17	35	9	44	7	86	64	43	39	50	55	68	19	8	9	14	8.5	M4	24	1.27	EBB/EPB25
BK20	20	35	8	43	8	88	60	44	34	52	50	70	19	8	9	14	8.5	M4	30	1.19	EBB/EPB32
BK30	30	45	14	61	9	128	89	64	51	76	78	102	23	11	14	20	13	M6	40	3.32	EBB/EPB40
BK40	40	61	18	76	15	160	110	80	60	100	35	140	33	14	18	26	17.5	M8	50	6.5	EBB/EPB50

Model FK Round Type Support Unit on the Fixed Side

Support Unit Model No.	d	L	L ₁	L ₂	L ₃	В	Н	b ± 0.02	h1 ±0.02	B ₁	H2	E	Р	C1	C2	dз	d1	d2	h	М	Т	Mass (kg)	Ball Screw Model No.
FK12	12	25	5	29	5	60	43	30	22	35	32.5	18	46	13	6	5.5	6.6	10.8	1.5	М3	19	0.41	EBB/EPB1605
FK15	15	27	6	32	6	70	48	35	28	40	38	18	54	15	6	5.5	6.6	11	6.5	M3	22	0.57	EBB/EPB2005 EBB/EPB25
FK20	20	35	9	44	7	86	64	43	39	50	55	28	68	19	8	6.6	9	14	8.5	M4	24	1.27	EBB/EPB32
FK30	30	35	8	43	8	88	60	44	34	52	50	22	70	19	8	6.6	9	14	8.5	M4	30	1.19	EBB/EPB40

Model BF Square Type Support Unit on the Support Side

Part No.	Part name	No. of units
1	Housing	1
2	Bearing	1
3	Snap ring	1

																Unit : mm
Support Unit Model No.	d	L	В	Н	b ± 0.02	h1 ±0.02	B1	H1	Р	d1	d2	h	Bearing used	Snap ring used	Mass (kg)	Ball Screw Model No.
BF12	12	25	60	43	30	22	35	32.5	46	6.6	10.8	1.5	6000ZZ	C10	0.3	EBB/EPB1605
BF15	15	27	70	48	35	28	40	38	54	6.6	11	6.5	6002ZZ	C15	0.38	EBB/EPB2005 EBB/EPB25
BF17	17	35	86	64	43	39	50	55	68	9	14	8.5	6203ZZ	C17	0.74	EBB/EPB25
BF20	20	35	88	60	44	34	52	50	70	9	14	8.5	6004ZZ	C20	0.76	EBB/EPB32
BF30	30	45	128	89	64	51	76	78	102	14	20	13	6206ZZ	C30	1.97	EBB/EPB40
BF40	40	61	160	110	80	60	100	35	140	18	26	17.5	6208ZZ	C40	3.27	EBB/EPB50

Note) The area marked with "*" is imprinted with a numeric character(s) as part of the model number.

Model FF Round Type Support Unit on the Support Side

Part No.	Part name	No. of units
1	Housing	1
2	Bearing	1
3	Snap ring	1
-		

Unit : mm

Support Unit Model No.	d	L	н	F	D	A	PCD	В	d1	d2	h	Bearing used	Snap ring used	Mass (kg)	Ball Screw Model No.
FF12	10	15	7	8	34 ^{-0.009} -0.025	52	42	42	4.5	8	4	6000ZZ	C10	0.11	EBB/EPB1605
FF15	15	17	9	8	40 +0.009 -0.025	63	50	52	5.5	9.5	5.5	6002ZZ	C15	0.2	EBB/EPB2005 EBB/EPB25
FF20	20	20	11	9	57 ^{-0.01} -0.029	85	70	68	6.6	11	6.5	6204ZZ	C20	0.27	EBB/EPB32
FF30	30	27	18	9	75 ^{-0.01} -0.029	117	95	93	11	17.5	11	6206ZZ	C30	1.07	EBB/EPB40

Dimensions

	n		mm
		п.	111111
-			

Model No.	Screw shaft outer diameter	Lead	Ball center- to-center diameter	Thread minor diameter	Limitat Screw Sh	Shaft mass	
	d	Ph	dp	dc	Cp5	Ct7	kg/m
TS 1605	16	5	16.75	13.1	1500	2000	1.25
TS 2005	20	5	20.5	17.1	2000	2500	2.06
TS 2505	25	5	25.5	22.1	2000	4000	3.35
TS 2510	25	10	26.0	21.6	2000	4000	3.45
TS 3205	32	5	32.75	29.2	2000	4000	5.67
TS 3210	32	10	33.75	26.4	2000	4000	4.98
TS 4005	40	5	40.75	37.1	2000	4000	9.6
TS 4010	40	10	41.75	34.4	2000	4000	8.22
TS 4020	40	20	41.75	34.7	2000	4000	9.03
TS 5005	50	5	50.75	47.1	2000	4000	14.59
TS 5010	50	10	51.75	44.4	2000	4000	13.38
TS 5020	50	20	52.25	43.6	2000	4000	13.8
TS 6310	63	10	64.75	57.7	2000	4000	21.93
TS 6320	63	20	65.7	56.0	2000	4000	21.57

Mounting Thread model without flange can also be manufactured

								Unit:mm
	Screw shaft			Nut dim	nensions	_	Basic lo	ad rating
Model No.	outer diameter	Lead	Outer diameter	Outer length	Overall length	М	Са	Coa
	d	Ph	D 1	B1	L1		KIN	KIN
EBB 2505-3S ¹⁾	25	5	40	35	52	M36×1.5	12.1	22.6

¹⁾S means special shape symbol

N₁ ℓ₀ F

I

Permissible Rotational Speed of Ball Screw

Permissible Rotational Speed of Ball Screw

The permissible rotational speed of the Ball Screw must be obtained from the dangerous speed of the screw shaft and the DN value.

Of the permissible rotational speed determined by dangerous speed (N_1) and the permissible rotational speed determined by DN value (N_2) , the lower rotational speed is regarded as the permissible rotational speed of Ball Screw.

N₁: Dangerous Speed of the Screw Shaft

When the rotational speed exceeds a certain limit, the Ball Screw may resonate and eventually become unable to operate due to the screw shaft's natural frequency.

Therefore, it is necessary to select a model so that it is used below the resonance point (dangerous speed). Figure on the right page shows the relationship between the screw shaft diameter and a dangerous speed. If determining a dangerous speed by calculation, it can be obtained from the equation below.

$N_1 = \frac{60 \cdot \lambda_1^2}{2\pi \cdot \ell_b^2} \times \sqrt{\frac{E \times 10^3 \cdot I}{\gamma \cdot A}} \times 0.8 = \lambda_2 \cdot \frac{d_1}{\ell_b^2} \times 10^7$
: Permissible rotational speed determined by dangerous speed [min ⁻¹] : Distance between two mounting surfaces [mm]

: Young's modulus [2.06×10⁵ N/mm²]

: Minimum geometrical moment of inertia of the shaft [mm⁴]

$$I = \frac{\pi}{64} \cdot d_1^4$$
 d_1 : screw-shaft thread minor diameter [mm]

γ : Density [specific gravity: 7.85×10⁻⁶ kg/mm³]

A : Screw shaft cross-sectional area [mm²]

A =
$$\frac{\pi}{4} \cdot d_1^2$$

 λ_1, λ_2 : Factor according to the mounting method

Fixed – free	$\lambda_1 = 1.875$	$\lambda_2 = 3.4$
Supported – supported	$\lambda_1 = 3.142$	$\lambda_2 = 9.7$
Fixed – supported	$\lambda_1 = 3.927$	$\lambda_2 = 15.1$
Fixed – fixed	$\lambda_1 = 4.73$	$\lambda_2 = 21.9$

Note) that in this equation, a safety factor of 0.8 is multiplied to the result.

N₂: DN Value of the Nut

The permissible rotational speed determined by the DN value obtained using the equations.

(indicated in the specification tables of the respective model number)

If the working rotational speed exceeds N_2 , a high-speed type Ball Screw is available. Contact THK for details.

Permissible Axial Load

Buckling Load on the Screw Shaft

With the Ball Screw, it is necessary to select a screw shaft so that it will not buckle when the maximum compressive load is applied in the axial direction.

Below figure shows the relationship between the screw shaft diameter and a buckling load. If determining a buckling load by calculation, it can be obtained from the equation below.

$$\mathsf{P}_{1} = \frac{\eta_{1} \cdot \pi^{2} \cdot \mathsf{E} \cdot \mathsf{I}}{\ell_{a}^{2}} \times 0.5 = \eta_{2} \cdot \frac{\mathsf{d}_{1}^{4}}{\ell_{a}^{2}} \times 10^{4}$$

P₁: Bucking load [N] ℓ_a : Distance between two mounting surfaces [mm] E: Young's modulus [2.06×10⁵ N/mm²]

I : Minimum geometrical moment of inertia of the shaft [mm⁴]

 $I = \frac{\pi}{64} \cdot d_1^4$ d_1 : screw-shaft thread minor diameter [mm]

 λ_1, λ_2 : Factor according to the mounting method Fixed – free $\lambda_1 = 1.875$ $\lambda_2 = 3.4$

=ixed – free	λ ₁ =1.875	λ2=3.4
Supported – supported	$\lambda_1 = 3.142 \lambda_2 = 9.7$	
ixed – supported	λ1=3.927λ2=15.1	
Fixed – fixed	λ1=4.73	λ2=21.9

Note) That in this equation, a safety factor of 0.5 is multiplied to the result.

Diagram of Permissible Axial Load

Permissible Tensile Compressive Load on the Screw Shaft

If an axial load is applied to the Ball Screw, it is necessary to take into account not only the buckling load but also the permissible tensile compressive load in relation to the yielding stress on the screw shaft. The permissible tensile compressive load is obtained from the equation.

$$P_2 = \sigma \frac{\pi}{4} d_1^2 = 116 \cdot d_1^2$$

P2: Permissible tensile compressive load [N]

- σ : Permissible tensile compressive stress (147 MPa)
- d1 : Screw-shaft thread minor diameter [mm]

Static Safety Factor

Static Safety Factor

Depending on the conditions, it is necessary to include the following static safety factor when calculating the calculated load. When the Ball Screw is stationary or in motion, unexpected external force may be applied through a load caused by an impact or a sudden start or stop.

Basic static load rating C₀a

The basic static load rating (C_0a) is a static load with a constant direction and magnitude whereby the sum of the permanent deformation of the rolling element and that of the raceway on the contact area under the maximum stress is 0.0001 times the rolling element diameter. With the Ball Screw, it is defined as the axial load. (Specific values of each Ball Screw model are indicated in the specification tables for the corresponding model number.)

fS	C ₀ a
10 –	Famax

 $\begin{array}{ll} fs & : \mbox{Static safety factor} \\ C_0a & : \mbox{Basic static load rating [kN]} \\ Famax & : \mbox{Permissible Axial load [kN]} \end{array}$

Static safety factor (fs)

Machine using the Ball screws	Load conditions	fs
General industrial	Without vibration or impact	1 to 1.3
machinery	With vibration or impact	2 to 3
Machina taal	Without vibration or impact	1 to 1.5
Machine tool	With vibration or impact	2.5 to 7

Nominal Rating Life

Calculating the Nominal Rating Life

The nominal rating life of the Ball Screw is calculated from the equation below using the basic dynamic load rating (Ca) and the applied axial load.

Basic dynamic load rating Ca

The basic dynamic load rating (Ca) is used in calculating the nominal rating life when a Ball Screw operates under a load. The basic dynamic load rating (Ca) is a centric, axial load with constant direction and magnitude, where theoretically endure the nominal rating life (L10) of a Group of identical Ball screws and operating under the same conditions to 10^6 revolutions. (Specific basic dynamic load ratings (Ca) are indicated in the specification tables of the corresponding model numbers.)

Life in revolutions

$$L10 = \left(\frac{Ca}{fw \cdot Fa}\right)^3 \times 10^6$$

L₁₀ : Life in revolutions [revolutions] Ca : Basic dynamic load rating [kN] Fa : Applied axial load [kN]

fw : Load factor

Load factor (fw)

Vibrations / impact	Speed	fw
Faint	Without vibration or impact	1 ~ 1.2
Weak	With vibration or impact	1.2 ~ 1.5
Medium	Without vibration or impact	1.5 ~ 2.0
Strong	With vibration or impact	2.0 ~ 3.5

Life in hours

If the revolutions per minute is determined, the life in hours can be calculated from the equation below using the life in revolutions (L_{10}) .

$L10h = \frac{L1}{60}$	L10	$L10 \times Ph$
	$60 \times N$	$\overline{2 \times 60 \times n \times lS}$

L_{10h}	Life in hours [h]
Ν	Revolutions per minute [min-1]
N:	Reciprocations per minute [min-1]
Ph	Ball Screw lead [mm]
ls	Stroke [mm]

• Handling

- (1) Please use at least two people to move any product weighing 20 kg or more, or use a dolly or another conveyance. Doing so may cause injury or damage.
- (2) Do not disassemble the parts. This will result in loss of functionality.
- (3) Tilting the Ball Screw shaft and the Ball Screw nut may cause them to fall by their own weight.
- (4) Take care not to drop or strike the Ball Screw. Failure to do so could cause injury or product damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- (5) When assembling, do not remove the Ball Screw nut from the Ball Screw shaft.
- (6) When handling the product, wear protective gloves, safety shoes, etc., as necessary to ensure safety.

• Precautions on Use

- Prevent foreign material, such as cutting chips or coolant, from entering the product. Failure to do so may cause damage.
 If the product is used in an environment where cutting chips, coolant, corrosive solvents, water, etc., may enter the product, use bellows, covers, etc., to prevent them from entering the product.
- (3) Do not use the product at temperature of 80°C or higher. Except for the heat-resistant models, exposure to higher temperatures may cause the resin/rubber parts to deform/be damaged.
- (4) If foreign material such as cutting chips adheres to the product, replenish the lubricant after cleaning the product.
- (5) Micro-oscillation makes it difficult for oil film to form on the raceway in contact with the rolling element, and may lead to fretting. Accordingly, use grease offering excellent fretting toughness. It is also recommended that the Ball Screw nut be turned once or so on a regular basis to make sure oil film is formed between the raceway and rolling element.
- (6) Do not use undue force when fitting parts (pin, key, etc.) to the product. This may generate pressure marks on the raceway, leading to loss of functionality.
- (7) If an offset or skewing occurs with the Ball Screw shaft support and the Ball Screw nut, it may substantially shorten the service life. Pay much attention to components to be mounted and to the mounting accuracy.
- (8) If any of the rolling elements falls from the Ball Screw nut, contact THK instead of using the product.
- (9) When using this product with a vertical orientation, take preventive measures such as adding a safety mechanism to prevent falls. The own weight of the Ball Screw nut may cause it to fall.
- (10) Do not use this product beyond its permissible rotational speed. Doing so may cause accidents or component damage. Be sure to use the product within the specification range designated by THK.
- (11) Do not cause the Ball Screw nut to overshoot. The ball may drop, circulating parts may be damaged, raceway in contact with the ball may develop pressure marks, etc., resulting in malfunction. Continuing to use the product in this condition may lead to premature wear or damage to circulating parts.
- (12) Use the Ball Screw by providing a LM Guide, Ball Spline or other guide element. Otherwise, the Ball Screw may be damaged.
 (13) Insufficient rigidity or accuracy of mounting members causes the bearing load to concentrate on one point and the bearing performance will drop significantly. Accordingly, give sufficient consideration to the rigidity/accuracy of the housing and base and strength of the fixing bolts.

Lubrication

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Mixing greases using the same type of thickening agent may still cause adverse interaction between the two greases if they use different additives, etc.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, use the grease appropriate for the specification/environment.
- (4) When lubricating the product having no grease nipple or oil hole, apply grease directly on the raceway and stroke the product several times to let the grease spread inside.
- (5) The consistency of grease changes according to the temperature. Take note that the torque of the Ball Screw also changes as the consistency of grease changes.
- (6) After lubrication, the rotational torque of the Ball Screw may increase due to the agitation resistance of grease. Be sure to perform a break-in to let the grease spread fully, before operating the machine.
- (7) Excess grease may scatter immediately after lubrication, so wipe off scattered grease as necessary.
- (8) The properties of grease deteriorate and its lubrication performance drops over time, so grease must be checked and added properly according to the use frequency of the machine.
- (9) Although the lubrication interval may vary according to operating conditions and the service environment, lubrication should be performed approximately every 100 km in travel distance (three to six months). Set the final lubrication interval/amount based on the actual machine.
- (10) Depending on the mounting orientation and access position, lubricant may not spread fully and poor lubrication may occur. Give full consideration to these factors in the design stage.
- (11) When using a Ball Screw, it is necessary to provide effective lubrication. Using the product without lubrication may increase wear of the rolling elements or shorten the service life.

Storage

When storing the Ball Screw, enclose it in a package designated by THK and store it in a room in a horizontal orientation while avoiding high temperature, low temperature and high humidity.

After the product has been in storage for an extended period of time, lubricant inside may have deteriorated, so add new lubricant before use.

Disposal

Dispose of the product properly as industrial waste.

LIMITED WARRANTY

LIMITED WARRANTY AND LIMITATION OF LIABILITY

THK CO. LTD., FOR ITSELF AND ITS RELATED COMPANIES AND SUBSIDIARIES (HEREINAFTER DESCRIBED COLLECTIVELY AS "THK") WARRANTS THAT ALL THK PRODUCTS SOLD WILL BE FREE OF DEFECTS IN MATERIALS AND WORKMANSHIP FOR A PERIOD OF TWELVE (12) MONTHS FROM DATE OF DELIVERY. THE FOREGOING TWELVE (12) MONTH WARRANTY SHALL NOT BE EXTENDED OR CHANGED BY THK FURNISHING ANY REPLACEMENTS, ADDITIONS, ATTACHMENTS, ACCESSORIES OR REPAIRS TO THE PRODUCT SUBSEQUENT TO THE DATE OF DELIVERY OR ACCEPTANCE. THE FOREGOING WARRANTY IS THE SOLE AND EXCLUSIVE WARRANTY OF THK REGARDING THE PRODUCT.

DISCLAIMER OF OTHER WARRANTIES

OTHER THAN THE FOREGOING WARRANTY, THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OR ANY AFFIRMATIONS OF FACT OR PROMISES BY THK WITH RESPECT TO THE PRODUCT. THK DISCLAIMS ANY WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, NOT SPECIFICALLY SET FORTH ABOVE. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, THK EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, INFRINGEMENT OR ANY REPRESENTATIONS OF FACT OR QUALITY NOT EXPRESSLY SET FORTH HEREIN.

LIMITATION OF LIABILITY AND REMEDIES

THK'S SOLE RESPONSIBILITY AND LIABILITY INCURRED AS A RESULT OF THE SALE AND/OR USE OF THE PRODUCT, AND THE PURCHASER'S EXCLUSIVE REMEDY AGAINST THK UNDER ANY WARRANTY SHALL BE LIMITED TO THE REPAIR OR REPLACEMENT, AT THK'S OPTION, OF PRODUCT COMPONENTS NOT CONFORMING TO THE WARRANTY. THE TOTAL LIABILITY OF THK SHALL IN NO EVENT EXCEED THE AMOUNT ACTUALLY PAID TO THK BY PURCHASER WITH RESPECT TO THE PRODUCT. THIS LIMITATION OF REMEDY IS INTENDED BY THE PARTIES TO SURVIVE EVEN IF THE REMEDY IS CLAIMED TO HAVE FAILED OF ITS ESSENTIAL PURPOSE. PURCHASER'S FULL AND COMPLETE PERFORMANCE OF ALL OBLIGATIONS OF PURCHASER RECITED IN THIS AGREEMENT IS A CONDITION PRECEDENT TO THK'S WARRANTY OBLIGATIONS AND LIABILITIES HEREIN.

PURCHASER'S DAMAGES AND LIMITATIONS

IN NO EVENT SHALL THK BE LIABLE TO PURCHASER, ITS ASSIGNS OR AGENTS, FOR ECONOMIC LOSS, INCIDENTAL OR CONSEQUENTIAL DAMAGES, IN CONTRACT OR IN TORT, INCLUDING BUT NOT LIMITED TO, ANY DAMAGES FOR LOST PROFITS, DOWN-TIME, LOST PRODUCTION, FAILURE TO MEET PURCHASER'S SALES CONTRACTS, OR DEFECTS IN PURCHASER'S MATERIALS OR WORKMANSHIP ARISING DIRECTLY OR INDIRECTLY FROM THE USE OF THE PRODUCT.

DISCLAIMER

This Catalog provides basic information relating to THK linear motion and related products. The Catalog, including all information, charts, formulas, factors, accuracy standards, tolerances and application recommendations contained herein, is only a starting point for the customer's selection of appropriate products, and may not apply in all intended applications. The Catalog is not a substitute for a proper application analysis conducted by an experienced, knowledgeable design engineer. Product selection should be based upon your specific application needs and conditions, which will vary greatly depending on many factors. No specific product application should be based solely on the information contained in this Catalog. All purchases of THK Products are subject to the limited warranty offered by THK Co., Ltd, for itself and on behalf of its related companies and subsidiaries. Customers should confirm independently that a contemplated application is safe, appropriate and effective.

"All trademarks used in this Catalog are registered trademarks in the Country of Japan. If there is any question as to the validity of such trademarks outside of Japan, an inquiry should be made in that particular country."

ISO Standard Compliant Ball Screw EBB/EPB

For more information, please refer to THK General Catalogue or website.

- "LM Guide" and 🦚 are registered trademarks of THK CO., LTD.
- The actual products may differ from the pictures and photographs in this catalogue.
- Outward appearances and specifications are subject to change without notice for the purpose of improvement. Please consult THK before using.
- Although great care has been taken in the production of this catalogue, THK will not take any responsibility for damage resulting from
- typographical errors or omissions. For exports of our products and technologies and sales for exports, our basic policy is to comply with the Foreign Exchange and Foreign Trade Act
- and other laws and regulation. Please consult us in advance if you want to export our products by the piece.

All rights reserved

THK CO., LTD

Headquarters 2-12-10 Shibaura, Minato-ku, Tokyo 108-8506 Japan International Sales Department Phone: +81-3-5730-3860

www.thk.com

for mor
tech

THK GmbH	
 European Headquarters 	Phone: +49-2102-7425-555
Düsseldorf Office	Phone: +49-2102-7425-0
Stuttgart Office	Phone: +49-7141-4988-500
• U.K. Office	Phone: +44-1384-471550
Italy Office	Phone: +39-02-9901-1801
Sweden Office	Phone: +46-8-445-7630
Austria Ofifce	Phone: +43-7229-51400
• Spain Office	Phone: +34-93-652-5740
Turkey Office	Phone: +90-216-362-4050
Prague Office	Phone: +420-2-41025-100
Moscow Office	Phone: +7-495-649-80-47
THK Europe B.V.	
Eindhoven Office	Phone: +31-40-290-9500
THK France S.A.S.	
Paris Office	Phone: +33-1-7425-3800

Dealer