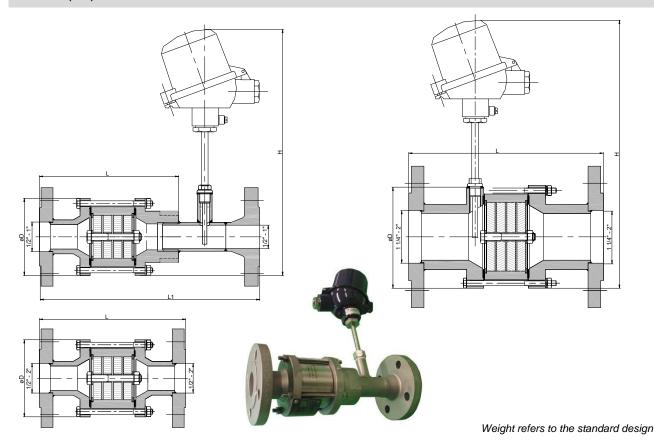

Type sheet

Bi-directional in-line detonation flame arrester, short-time burning proof

KITO® RG-Det4-IIC-...

KITO® RG-Det4-IIC-...-T (-TT)


-design with flange connection -

Application

For installation into pipes to the protection of vessels and components against **stable** detonation of flammable liquids and gases. Tested and approved as detonation flame arrester **type 4.** Approved for all substances of explosion groups IIA1 to IIC with a maximum experimental safe gap (MESG) < 0.5 mm. Bi-directionally working in pipes, whereby an operating pressure of 1.2 or 1.1 bar abs. and an operating temperature of 60 °C must not be exceeded. All sizes are tested against "stabilized burning" and withstand this up to a max. burn time BT ≤ 1.0 min. To detect a "stabilized burning" a temperature sensor must be installed at each endangered side. Mounting is acceptable in any position, in horizontal as well as in vertical pipes.

Dimension (mm)

	DN		_	I (DINI)	I (ACME)	L4 (DIN)	I 4 (ACME)		P max	l. m
	DIN	ASME	D	L (DIN)	L (ASME)	L1 (DIN)	L1 (ASME)	Н	(bar abs.)	kg
1/2"	15 PN 40	1/"		177						
3/4"	20 PN 40	3/4"	90	173	173			290	1.2	
1"	25 PN 40	1"		173		269				,
1 1/4"	32 PN 40	1 1/4"		196						
1 1/2"	40 PN 40	1 ½"	120	206		-	-	315	1.1	,
2"	50 PN 16	2"		230						

Example for order

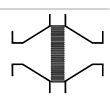
KITO® RG-Det4-IIC-1 1/4"-1.2-T DN 32

(design with flange connection DN 32 PN 40 and a temperature sensor)

Type examination certificate to EN ISO 16852 and C€-marking in accordance to ATEX-Directive 2014/34/EU

page 1 of 2

KITO Armaturen GmbH) +49 (0) 531 23000-0 G 28.0 N +49 (0) 531 23000-10 01-2020 Grotrian-Steinweg-Str. 1c Date: D-38112 Braunschweig www.kito.de Abt. Doku KITO Created: VAT Reg.No DE812887561 info@kito.de \bowtie Design subject to change

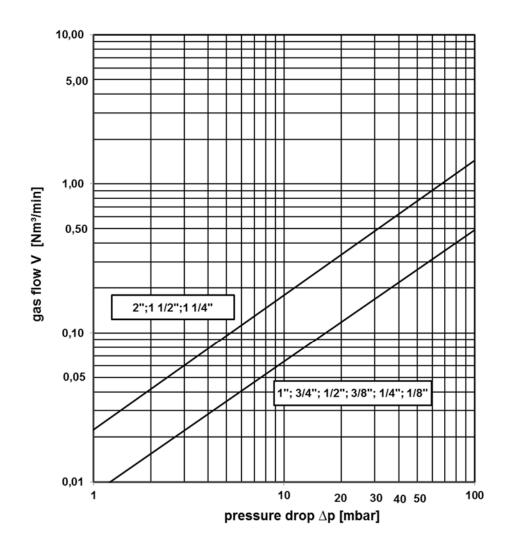

Type sheet

Bi-directional in-line detonation flame arrester, short-time burning proof

KITO® RG-Det4-IIC-...

KITO® RG-Det4-IIC-...-T (-TT)

-design with flange connection -


Design

	standard	optionally
housing	steel	stainless steel mat. no. 1.4571
gasket	HD 3822	PTFE
KITO®-flame arrester element	completely interchangeable	
KITO®-casing / KITO®-grid	stainless steel mat. no. 1.4301 / 1.4310	stainless steel mat. no. 1.4571 / 1.4571
bolts / nuts	A2	A4
temperature sensor		PT 100, connection 1/4", 1.4571
flange connection	EN 1092-1 type B1	ASME B16.5 Class 150 RF

Performance curves

Flow capacity V based on air of a density ρ = 1.29 kg/m³ at T = 273 K and atmospheric pressure p = 1.013 mbar. For other gases the flow can be approximately calculated by

$$\dot{\mathbf{V}} = \dot{\mathbf{V}}_{b} \cdot \sqrt{\frac{\rho_{b}}{1.29}} \ or \qquad \dot{\mathbf{V}}_{b} = \dot{\mathbf{V}} \cdot \sqrt{\frac{1.29}{\rho_{b}}}$$

page 2 of 2