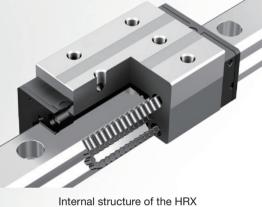


Roller Type LM Guide

LM Guide suitable for ultra-high rigidity and ultra-heavy loads

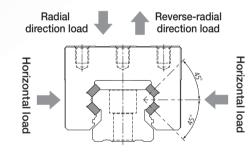
HENNLICH -ŽIJEME TECHNIKOU **o.z. LIN-TECH HENNLICH s.r.o.** Českolipská 9, 412 01 Litoměřice

Model HRX


Roller Type LM Guide

LM Guide suitable for ultra-high rigidity and ultra-heavy loads

Feature 1 Ultra-High Rigidity and Ultra-Heavy Loads **D**


The HRX is an LM Guide that uses rollers as a rolling element for higher rigidity. Also, compared to our existing roller products, we have extended the length of the metal LM block and increased the number of load-bearing rollers to achieve an improved static load rating.

Feature 2 4-Way Equal Load

p. 3

On the HRX, each row of rollers is arranged at a contact angle of 45° so that the LM block receives an equal load rating in all directions (radial, reverse-radial, and horizontal directions), ensuring high rigidity in all directions.

Feature 3 LM Blocks and LM Rails Available for Individual Sale **p.15**

The HRX lineup features interchangeable products that can meet specifications by freely combining LM blocks and LM rails of the same model number. See p. 15 for details.

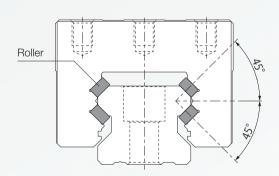
HENNLICH -ŽIJEME TECHNIKOU

o.z. LIN-TECH HENNLICH s.r.o. Českolipská 9, 412 01 Litoměřice

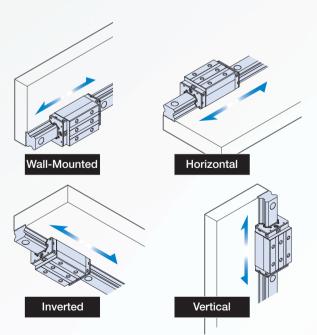
Roller Type LM Guide Model HRX

Feature 1 Ultra-High Rigidity and Ultra-Heavy Loads

For the HRX, in order to achieve an improved basic static load rating, we have extended the length of the metal LM block and increased the number of load-bearing rollers.

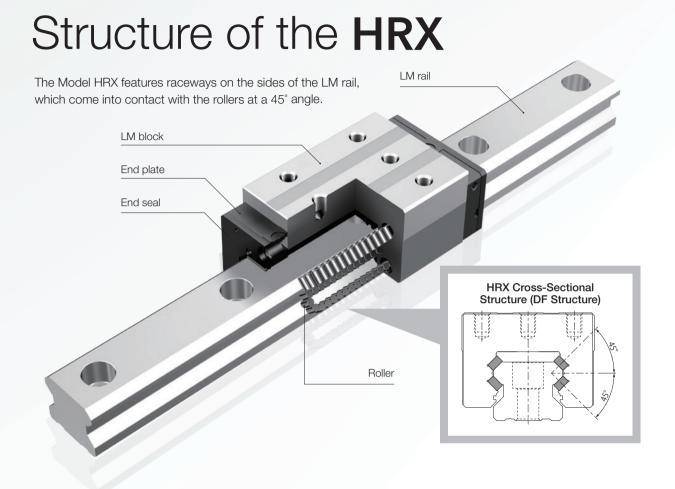

Metal LW Block Length and Basic Static Load Rating									
Model No.		Length of metal L	LM block (mm) 1	Basic static load rating (kN) C₀					
		Our existing roller products	HRX	Our existing roller products	HRX				
#25	C/R	65.5	75.4	57.5	73.1				
#25	LC/LR	85.1	92.2	75	89.3				
#30	C/R	75	84	82.5	104.7				
#30	LC/LR	99	108.5	108	135.2				
#35	C/R	82.2	92.2	119	150.1				
#35	LC/LR	112.2	120.2	165	195.7				
#45	C/R	107	115.7	192	250.4				
#45	LC/LR	142	150.7	256	326.7				
#66	C/R	129.2	143.2	266	369.9				
#55	LC/LR	179.2	192.7	366	497.9				
#65	C/R	171.7	195.7	441	567				
#05	LC/LR	229.8	260.7	599	756				

Metal LM Block Length and Basic Static Load Rating

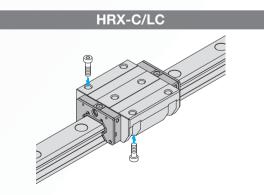

Feature 2 4-Way Equal Load

The Model HRX is designed to have an equal basic load rating on the LM block for all four directions. (*Four directions: radial, reverse-radial, horizontal)

As a result, this model can be used in any orientation, enabling a wide variety of applications.

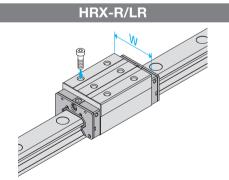

A contact angle of 45° is used so that the basic load rating is equal in all directions: radial, reverse-radial, and horizontal.

This model is equally suited for use in a horizontal orientation and any other orientation.


3 THK

o.z. LIN-TECH HENNLICH s.r.o. Českolipská 9, 412 01 Litoměřice

Lineup


The Model HRX comes in six sizes ranging from 25 to 65, and a lineup of four block types is available: C/LC and R/LR. The Model HRX's dimensions conform to world-standard ISO specifications (ISO 12090-1:2011 Rolling Bearings). Only #65R/LR height M differs from ISO dimensions.

The flange of this LM block has tapped holes. This type can be mounted from the top or the bottom. It is used in places where the table cannot have through holes for mounting bolts.

Lineup

Block Ty	/pe	HRX25	HRX30	HRX35	HRX45	HRX55	HRX65
Standard type	R	0	0	0	0	0	0
	С	0	0	0	0	0	0
Long type	LR	0	0	0	0	0	0
	LC	0	0	0	0	0	0

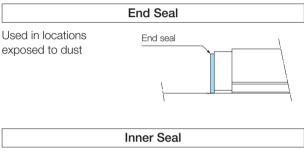
With this type, the LM block has a smaller width (W) and tapped holes. It is ideal for compact designs.

HENNLICH -ŽIJEME TECHNIKOU

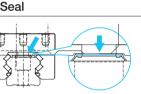
o.z. LIN-TECH HENNLICH s.r.o. Českolipská 9, 412 01 Litoměřice Telefon: +420 416 711 333 E-mail: lin-tech@hennlich.cz 4

www.hennlich.cz/lin-tech

Contamination Protection Accessories

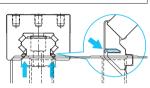

It is necessary to prevent foreign materials from getting inside the product, as it will lead to abnormal wear and a shortened service life. If it is likely that foreign materials will get inside, it is important to select an effective sealing or contamination protection device suited to the environmental conditions.

Seals

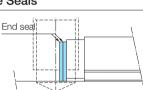

End seals made of synthetic rubber that are highly resistant to wear and side seals that further improve dust-proofing effectiveness are available. Use the symbols in the table to the right to specify if you need a contamination protection accessory.

Option Compatibility

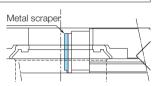
Symbol	Contamination protection accessories
UU	End seals
SS	End seals + side seals + inner seals
DD	Double seals + side seals + inner seals
ZZ	End seals + side seals + inner seals + metal scrapers
KK	Double seals + side seals + inner seals + metal scrapers



Used in locations severely exposed to dust or cutting chips


Side Seal

Used in locations where dust may enter the LM block from the side or bottom surfaces, such as vertical, horizontal, and inverted configurations


Double Seals

Used in locations exposed to much dust or many cutting chips

Metal Scraper (Non-Contact)

Used in locations where welding spatter may adhere to the LM rail

32

Seal Resistance Value

See the table to the right for the maximum seal resistance of SS seals per LM block when the product is lubricated.

* For the overall lengths of LM blocks with seals attached, see p.7.

Maximum Seal Resistance Unit: N								
Model No.	Seal symbol Maximum seal resistance							
HRX25		14						
HRX30		15						
HRX35	SS	18						
HRX45		23						
HRX55		26						

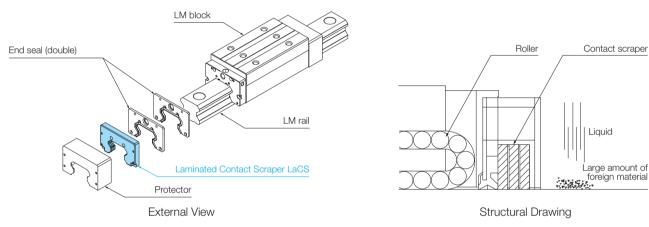
5 THK

Telefon: +420 416 711 333 E-mail: lin-tech@hennlich.cz

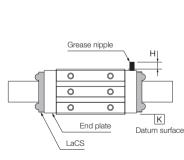
HRX65

Laminated Contact Scraper LaCS

For locations with an adverse environment, Laminated Contact Scraper LaCS is available. LaCS removes minute foreign material adhering to the LM rail in multiple stages and prevents it from entering the LM block with a laminated contact structure (3-layer scraper).


Option Compatibility

Symbol	Contamination protection accessories
SSHH	End seals + side seals + inner seals + LaCS
DDHH	Double seals + side seals + inner seals + LaCS
ZZHH	End seals + side seals + inner seals + LaCS + metal scrapers
ККНН	Double seals + side seals + inner seals + LaCS + metal scrapers
JJHH	End seals + side seals + inner seals + LaCS + protectors
ттнн	Double seals + side seals + inner seals + LaCS + protectors


Features

• Because the three layers of scrapers fully contact the LM rail, LaCS is highly capable of removing minute foreign material.

· Low friction resistance is achieved through the use of oil-impregnated, self-lubricating synthetic foam rubber.

Dimensional Increase with a Grease Nipple

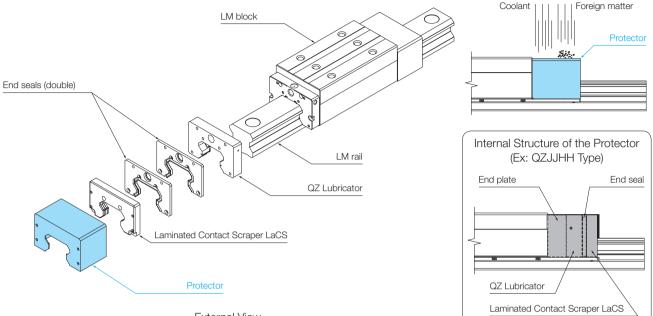
Location for Mounting the Side Grease Nipple

Model No.	Side greasing				
Model No.	H (mm)	Nipple type			
HRX25	6.9				
HRX30	6.9				
HRX35	6.7	A-M6F			
HRX45	6.7	A-MOF			
HRX55	6.2				
HRX65	6.2				

Note) Contact THK if you desire a grease nipple mounting location other than the above.

Maximum Resistance Value When LaCS Is Applied

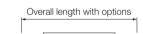
Model No.	Maximum sliding resistance (N)
HRX25	6.3
HRX30	7.2
HRX35	13
HRX45	18
HRX55	25
HRX65	34


Note 1) This represents only the resistance of the LaCS and excludes resistance from the LM block and seals.

6

Protector

The protector minimizes the ingress of foreign material even in harsh environments where foreign material such as fine particles and liquids are present.



External View

The Overall LM Block Length with LaCS and Seals Attached

Unit: mm

Currente e l		Overall length when options are attached										
Symbol	HRX25	HRX25L	HRX30	HRX30L	HRX35	HRX35L	HRX45	HRX45L	HRX55	HRX55L	HRX65	HRX65L
No symbol	94.4	111.2	104	128.5	116.2	144.2	143.7	178.7	173.2	222.7	231.7	296.7
UU/SS	99.6	116.4	110.6	135.1	123.2	151.2	150.7	185.7	180.2	229.7	239.1	304.1
DD	104.8	121.6	117.2	141.7	130.2	158.2	157.7	192.7	187.2	236.7	246.5	311.5
ZZ	104.6	121.4	115.6	140.1	131.6	159.6	159.9	194.9	189.4	238.9	250.3	315.3
KK	109.8	126.6	122.2	146.7	138.6	166.6	166.9	201.9	196.4	245.9	257.7	322.7
SSHH	117.2	134	128.2	152.7	140.8	168.8	171.3	206.3	200.8	250.3	263.1	328.1
DDHH	122.4	139.2	134.8	159.3	147.8	175.8	178.3	213.3	207.8	257.3	270.5	335.5
ZZHH	122.2	139	133.2	157.7	149.2	177.2	180.5	215.5	210	259.5	274.3	339.3
ККНН	127.4	144.2	139.8	164.3	156.2	184.2	187.5	222.5	217	266.5	281.7	346.7
JJHH	122.2	139	133.2	157.7	149.2	177.2	180.3	215.3	209.8	259.3	274.1	339.1
TTHH	127.4	144.2	139.8	164.3	156.2	184.2	187.3	222.3	216.8	266.3	281.5	346.5

7 THK

Dedicated Cap for LM Rail Mounting Holes

Using dedicated caps to cover the LM rail mounting holes helps prevent foreign material from entering the mounting holes and LM block.

CV Cap								
The caps are made of a The CV cap is the succ	special synthetic resin. essor to the C cap, and its new		Сар	Used	Main dimensions (mm)			
structure makes it easier	Model No.	model No.	bolts	D	Н			
		HRX25	CV6	M6	11.4	2.6		
		HRX30	CV8	M8	14.4	3.3		
		HRX35	CV8	M8	14.4	3.3		
		HRX45	CV12	M12	20.4	3.4		

HRX55

HRX65

CV14

CV16

M14

M16

23.4

26.4

5.5

5.6

GC Cap									
GC caps are made of metal. (They are RoHS compliant.) GC caps adhere closer to the counterbore than CV caps,	Model No.	Cap model No.	Used bolts	Main dimensions (mm)					
so there is no clearance once they are inserted.				D	н				
LM rail mounting bolt	HRX25	GC6	M6	11.36	2.5				
LM railGC cap	HRX30	GC8	M8	14.36	3.5				
7777	HRX35	GC8	M8	14.36	3.5				
	HRX45	GC12	M12	20.36	4.6				
	HRX55	GC14	M14	23.36	5.0				
	HRX65	GC16	M16	26.36	5.0				

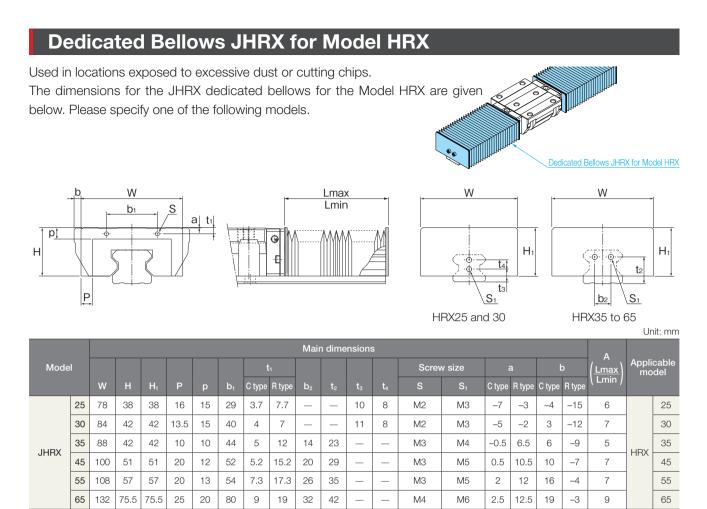
Note 1) GC caps are only sold with an LM Guide. They are not sold separately. The LM Guide model number code will have "GC" at the end when it is delivered.

Model Number Coding HRX35 LC 2 UU CO + 1200L P GC

GC caps attached

Note 2) GC caps cannot be used with LM rails that have undergone surface treatment.

Note 3) LM rail mounting holes for GC caps are special. (The mouth is not chamfered.)


Note 4) Be careful not to injure your hand when inserting GC caps.

Note 5) Be sure to make the GC caps level with the upper surface of the LM rail and clean (wipe) that surface after insertion.

Note 6) Contact THK if this product will be used in special environments such as in a vacuum, or at very low or high temperatures.

8

Note 1) Please contact THK if you will be using the dedicated bellows in anything other than a horizontal orientation (i.e. vertical, wall-mounted, or inverted), or if you require heat-resistant specifications.

Note 2) When using the bellows, lubrication is possible through methods such as a side nipple.

Note 3) When using the dedicated bellows, machining will be required to mount it on the LM block and LM rail. Please specify this when ordering.

Model Number Coding

JHR	X25	- 60/	360

Note) The bellows length is calculated as follows.

$$Lmin = \frac{St}{(A-1)}$$

$$Lmax = Lmin \cdot A$$

St: Stroke length (mm) A A: Expansion/contraction ratio

Model Bellows for HRX25 Bellows dimensions (Bellows length when contracted/extended)

Bellows Mounting Screw Length by Option Unit: mm

М	odel		HRX25	HRX30	HRX35	HRX45	HRX55	HRX65	
	Scr	rew size	M2	M2	M3	M3	M3	M4	
		Without seal	5	5	6	6	6	8	
		UU/SS	8	8	10	10	10	12	
		DD	10	12	14	14	14	16	
	Length	ZZ	8	10	12	12	12	14	
Block side mounting		KK	12	12	14	16	16	18	
		SSHH	16	18	18	20	20	25	
		DDHH	20	20	22	25	25	30	
		ZZHH	18	18	20	22	22	25	
		KKHH	20	22	25	25	25	30	
		JJHH	18	18	20	22	22	25	
		TTHH	20	22	25	25	25	30	
Rail side mounting	Scr	ew size	M3	M3	M4	M5	M5	M6	
screws	L	ength	6	6	8	10	10	12	

								Unit: mm
М	Model			HRX30	HRX35	HRX45	HRX55	HRX65
	Sci	rew size	M2	M2	M3	M3	M3	M4
-		QZUU/ QZSS	22	25	25	25	30	35
		QZDD	25	25	30	30	35	35
		QZZZ	25	25	25	25	30	35
Block side mounting		QZKK	25	30	30	30	35	40
screws	Length	QZSSHH	30	32	35	35	40	45
		QZDDHH	35	35	35	40	45	50
		QZZZHH	32	32	35	35	40	45
		QZKKHH	35	35	40	40	45	50
		QZJJHH	32	32	35	35	40	45
		QZTTHH	35	35	40	40	45	50
Rail side	Sci	rew size	M3	M3	M4	M5	M5	M6
mounting screws	L	ength.	6	6	8	10	10	12

9 THK

Lubrication

Standard Grease

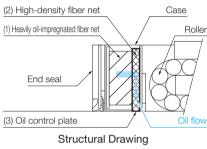
AFB-LF Grease is a general-purpose grease that provides excellent extreme pressure and mechanical stability properties through the use of a refined mineral oil base oil and a lithium-based consistency enhancer.

*Non-standard greases are also available. Contact THK for details.

AFB-LF Representative Physical Properties

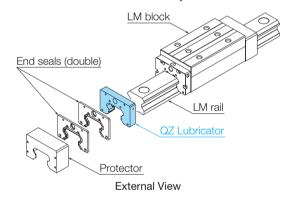
Item		Representative physical property	Testing method
Consistency enhan	icer	Lithium-based	
Base oil		Refined mineral oil	
Base oil kinematic viscosity:	mm²/s (40°C)	170	JIS K 2220 23
Worked penetration (25°	C, 60 W)	275	JIS K 2220 7
Mixing stability (100,0	00 W)	345	JIS K 2220 15
Dropping point: °	С	193	JIS K 2220 8
Evaporation volume: mass%	(99°C, 22 h)	0.4	JIS K 2220 10
Oil separation rate: mass% (100°C, 24 h)	0.6	JIS K 2220 11
Copper plate corrosion (B method	d, 100°C, 24 h)	Passed	JIS K 2220 9
Low-temperature torque:	Starting	130	JIS K 2220 18
mN•m (-20℃)	Rotational	51	JIS K 2220 10
4-ball testing (welding load): N		3089	ASTM D2596
Operating temperature r	ange: °C	-15 to 100	
Color		Yellowish brown	

QZ Lubricator

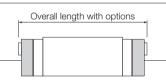

The QZ Lubricator feeds the right amount of lubricant to the LM rail raceway.

This allows an oil film to be constantly formed between the rollers and the raceway and significantly extends the lubrication maintenance interval.

The QZ Lubricator is made primarily of three components:


- (1) a highly oil-impregnated fiber net (which stores lubricant),
- (2) a high-density fiber net (which applies the lubricant to the raceways), and

(3) an oil control plate (which adjusts the amount of oil being applied). The lubricant is supplied from within the QZ Lubricator using the basic principle of capillary action, as used in felt-tip pens.

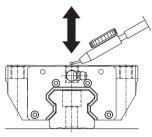

Features

- Since it compensates for oil loss, the lubrication maintenance interval can be significantly extended.
- It is an eco-friendly lubrication system that does not contaminate the surrounding area, as it feeds the right amount of lubricant to the roller raceway.

Symbol	Contamination protection accessories
QZUU	End seals + QZ
QZSS	End seals + side seals + inner seals + QZ
QZDD	Double seals + side seals + inner seals + QZ
QZZZ	End seals + side seals + inner seals + metal scrapers + QZ
QZKK	Double seals + side seals + inner seals + metal scrapers + QZ
QZSSHH	End seals + side seals + inner seals + LaCS + QZ
QZDDHH	Double seals + side seals + inner seals + LaCS + QZ
QZZZHH	End seals + side seals + inner seals + LaCS + metal scrapers + QZ
QZKKHH	Double seals + side seals + inner seals + LaCS + metal scrapers + QZ
QZJJHH	End seals + side seals + inner seals + LaCS + protectors + QZ
QZTTHH	Double seals + side seals + inner seals + LaCS + protectors + QZ

The Overall LM Block Length Dimension with QZ Lubricator and Seals Attached

												Unit: mm
Symbol					Overall le	ength when	options are	attached				
Symbol	HRX25	HRX25L	HRX30	HRX30L	HRX35	HRX35L	HRX45	HRX45L	HRX55	HRX55L	HRX65	HRX65L
QZUU/QZSS	129.6	146.4	140.6	165.1	153.2	181.2	180.7	215.7	220.2	269.7	279.1	344.1
QZDD	134.8	151.6	147.2	171.7	160.2	188.2	187.7	222.7	227.2	276.7	286.5	351.5
QZZZ	134.6	151.4	145.6	170.1	161.6	189.6	189.9	224.9	229.4	278.9	290.3	355.3
QZKK	139.8	156.6	152.2	176.7	168.6	196.6	196.9	231.9	236.4	285.9	297.7	362.7
QZSSHH	147.2	164	158.2	182.7	170.8	198.8	201.3	236.3	240.8	290.3	303.1	368.1
QZDDHH	152.4	169.2	164.8	189.3	177.8	205.8	208.3	243.3	247.8	297.3	310.5	375.5
QZZZHH	152.2	169	163.2	187.7	179.2	207.2	210.5	245.5	250	299.5	314.3	379.3
QZKKHH	157.4	174.2	169.8	194.3	186.2	214.2	217.5	252.5	257	306.5	321.7	386.7
QZJJHH	152.2	169	163.2	187.7	179.2	207.2	210.3	245.3	249.8	299.3	314.1	379.1
QZTTHH	157.4	174.2	169.8	194.3	186.2	214.2	217.3	252.3	256.8	306.3	321.5	386.5


「おおい 10

Radial Clearance Specifications

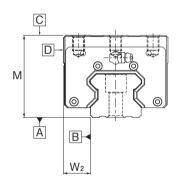
The Model HRX has one type of radial clearance (preload). (Medium preload (C0))

Radial Clearance

Radial Clearance Specifications Unit: µm

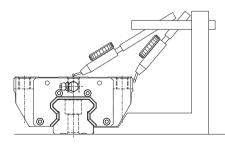
Model No.	Medium preload (C0)
HRX25	-2 to -1
HRX30	-2 to -1
HRX35	-2 to -1
HRX45	-3 to -2
HRX55	-3 to -2
HRX65	-4 to -2

Accuracy Standards


The accuracy of the LM Guide is specified for each model in terms of the dimensional tolerance for height and width, the difference between height and width in a pair, and running parallelism. (High accuracy grade/Precision grade)

Difference in Height (M)

Indicates the difference between the minimum and maximum values of height (M) of each LM Guide used on the same plane in combination.


Difference in Width (W₂)

Indicates a difference between the minimum and maximum values of the width (W₂) between each of the LM blocks, mounted on one LM rail in combination, and the LM rail.

Running Parallelism

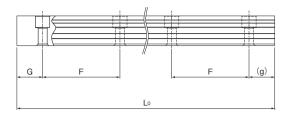
Refers to the tolerance for parallelism between the LM block and the LM rail datum surface when the LM block travels the whole length of the LM rail bolted to a reference surface.

Accuracy Standards

١

Accur	acy Standards		Unit: mm
Model No.	Accuracy (symbol) Item	High accuracy grade (H)	Precision grade (P)
	Dimensional tolerance in height (M)	±0.04	0 -0.04
	Difference in height (M)	0.015	0.007
25	Dimensional tolerance in width (W2)	±0.03	0 -0.03
30	Difference in width (W ₂)	0.015	0.007
	Running parallelism of surface C against surface A	See the table below for L parallelism by ac	M rail length and running curacy standard
	Running parallelism of surface D against surface B	See the table below for L parallelism by ac	M rail length and running curacy standard
	Dimensional tolerance in height (M)	±0.04	0 -0.05
	Difference in height (M)	0.015	0.007
	Dimensional tolerance in width (W2)	±0.04	0 -0.04
45 55	Difference in width (W ₂)	0.015	0.007
	Dimensional tolerance in height (M) ±0.04 Difference in height (M) 0.015 Dimensional tolerance in width (W2) ±0.03 Difference in width (W2) 0.015 Running parallelism of surface C against surface A See the table below for LM rail lend parallelism by accuracy st Running parallelism of surface B See the table below for LM rail lend parallelism by accuracy st Dimensional tolerance in height (M) ±0.04 Difference in width (W2) ±0.04 Difference in height (M) ±0.04 Difference in height (M) ±0.04 Difference in width (W2) 0.015 Running parallelism of surface C against surface A See the table below for LM rail lend parallelism by accuracy st Running parallelism of surface B See the table below for LM rail lend parallelism by accuracy st Dimensional tolerance in height (M) 0.02 Dimensional tolerance in height (M) 0.02 Dimensional tolerance in width (W2) ±0.04 Difference in width (W2) ±0.04 Difference in height (M) 0.02	M rail length and running curacy standard	
Dimensional tolerance in height (M) Difference in height (M) Dimensional tolerance in width (W2) Difference in width (W2) Difference in width (W2) Running parallelism of surface C against surface A Running parallelism of surface D against surface B Difference in height (M) Dimensional tolerance in height (M) Difference in height (M) Difference in height (M) Difference in width (W2) Difference in width (W2) Bunning parallelism of surface C against surface A Running parallelism of surface C against surface B Difference in height (M) Dimensional tolerance in height (M) Difference in width (W2) Difference in width	See the table below for L parallelism by ac	M rail length and running curacy standard	
	Dimensional tolerance in height (M)	±0.04	0 -0.05
	Difference in height (M)	0.02	0.01
	Dimensional tolerance in width (W2)	±0.04	0 -0.05
No. Item (H) Dimensional tolerance in height (M) ±0.04	Difference in width (W ₂)	0.02	0.01
	M rail length and running curacy standard		
		See the table below for L parallelism by ac	M rail length and running curacy standard

LM Rail Length and Running Parallelism by Accuracy Standard $Unit: \mu m$


Rail length (mm)		Running parallelism values			
Above	Or less	High accuracy grade (H)	Precision grade (P)		
_	50	3	2		
50	80	3	2		
80	125	3	2		
125	200	3.5	2		
200	250	4	2.5		
250	315	4.5	3		
315	400	5	3.5		
400	500	6	4.5		
500	630	7	5		
630	800	8.5	6		
800	1000	9	6.5		
1000	1250	11	7.5		
1250	1600	12	8		
1600	2000	13	8.5		
2000	2500	14	9.5		
2500	3090	16	11		

11 THK

Standard and Maximum Lengths of the LM Rail

The standard and maximum lengths of Model HRX LM rails are shown in the following table. If the maximum length of the desired LM rail exceeds these values, joint rails will be used. Contact THK for details. For special rail lengths, it is recommended to use a value corresponding to the G, g dimensions from the table. As the G, g dimensions increase, that portion becomes less stable, and the accuracy may be negatively affected.

Linit[,] mm

*If joint rails are not allowed, and a length greater than the maximum values is required, contact THK.

ModelNe					Unit: r
Model No.	HRX25	HRX30, 35	HRX45	HRX55	HRX65
-	220	280	570	780	1270
	280	360	675	900	1570
_	340	440	780	1020	2020
	400	520	885	1140	2620
	460	600	990	1260	_
	520	680	1095	1380	—
	580	760	1200	1500	_
	640	840	1305	1620	_
-	700	920	1410	1740	_
	760	1000	1515	1860	_
-	820	1080	1620	1980	_
-	940	1160	1725	2100	_
-	1000	1240	1830	2220	_
-	1060	1320	1935	2340	_
LM rail standard	1120	1400	2040	2460	_
length (L ₀)	1180	1480	2145	2580	_
	1240	1560	2250	2700	_
-	1300	1640	2355	2820	
-	1360	1720	2460	2940	_
-	1420	1800	2565	3060	
-	1480	1880	2670		
-	1540	1960	2775		_
-	1600	2040	2880		_
-	1720	2200	2985		_
-	1840	2360	3090		
-	1960	2520			
-	2080	2680			_
-	2200	2840			_
-	2320	3000			_
-	2440				_
andard pitch F	60	80	105	120	150
à, g dimension	20	20	22.5	30	35
laximum length	3000	3000	3090	3060	3000

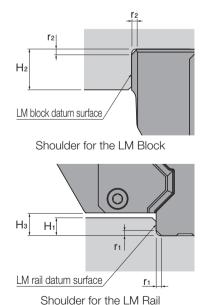
Standard Length and Maximum Length of the LM Rail

LM Rail Tapped-Hole Type

Tapped-hole type LM rails with tapped holes machined on the bottom surface are available for the Model HRX. This type is effective in situations where you want to mount from the bottom surface of the base or increase dust protection.

For standard tap pitch (F) and G, g dimensions, see "Standard and Maximum Lengths of the LM Rail" on p. 12.

Model Number Coding



LM rail tapped-hole type symbol

LM Rail Tapp	ed Hole	Unit: mm
Model	S1	Effective tap depth $ \varrho_{ 1} $
HRX25	M6	12
HRX30	M8	15
HRX35	M8	17
HRX45	M12	24
HRX55	M14	24
HRX65	M20	30

Shoulder Height of the Mounting Base and the Corner Radius

The mounting base for the LM rail and LM block has a reference surface on the side face to allow easy installation. The height of the datum shoulder varies based on the model. See below for details. The corner of the mounting shoulder must be machined to have a recess, or machined to be smaller than the corner radius (r), to prevent interference with the chamfer of the LM rail or the LM block. The corner radius (r) varies based on the model. See below for details.

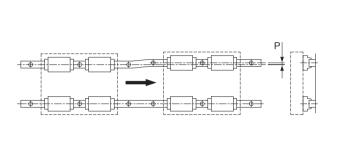
Shoulder Height of the Mounting Base and the Corner Radius

Model No.	Corner radius (LM rail) r1 (max)	Corner radius (LM block) r ₂ (max)	Shoulder height (LM rail) H₁ (max)	Shoulder height (LM block) H₂ (max)	H₃
HRX25	1.0	1.0	4.0	5.0	5.0
HRX30	1.0	1.0	4.0	5.0	5.0
HRX35	1.0	1.0	5.5	6.0	6.5
HRX45	1.5	1.5	6.5	8.0	8.5
HRX55	1.5	1.5	9.0	10.0	11
HRX65	1.5	2.0	9.5	10.0	12

The radius is the same after mounting the protector.

Onoulder	101	uic	

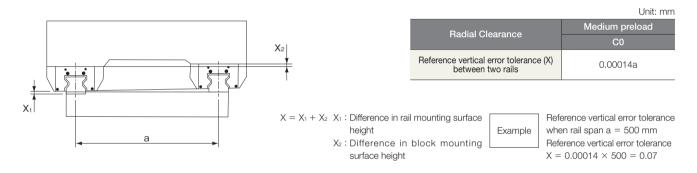
13 THK



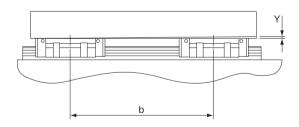
Telefon: +420 416 711 333 E-mail: lin-tech@hennlich.cz Unit: mm

Reference Error Tolerance for the Mounting Surface

Reference Horizontal Error Tolerance between Two Rails


Mounting surface error may affect the service life of the LM Guide. The table below shows the approximate value (P) of the reference horizontal error tolerance between two rails under normal use for each model number.

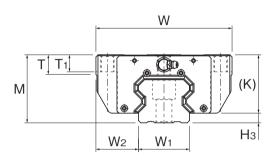
	Un	it: μm
Model No.	Medium preload (C0 clearance)	
HRX25	7	
HRX30	8	
HRX35	9	
HRX45	11	
HRX55	13	
HRX65	17	

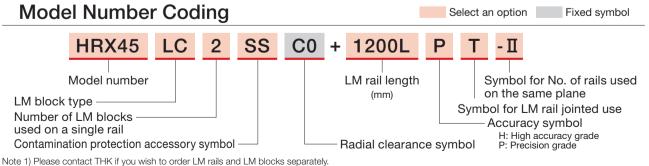

Reference Vertical Error Tolerance between Two Rails

The table shows the value (X) of the reference vertical error tolerance in the axial direction for rail span (a), which is proportional to the rail span (a).

Reference Vertical Error Tolerance in the Axial Direction

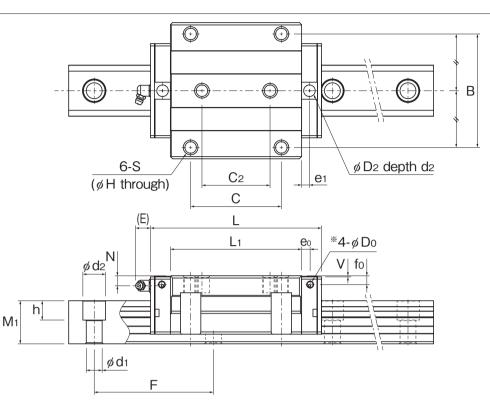
The table below shows the value (Y) of the reference vertical error tolerance in the axial direction for block span (b), which is proportional to the block span (b).


	Unit: mm
Reference vertical error tolerance (Y)	0.00004b


TAK 14

Specification Table

HRX-C/LC


	External dimensions								LM	block	k dime	ension	s				Pilot ho	le for sid	e nipple	Greasing h	ole on	the top	face*	
Model N	No.	М	W	L	В	С	C ₂	s	н	L ₁	т	T1	к	И	E	Grease nipple	e ₀	f _o	Do	D₂ (O-ring)	v	e ₁	d2	
HRX25	С	36	70	99.6	57	45	40	M8 through	6.8	75.4	9.5	10	31	5.5	12	B-M6F	6	6.2	5.2	6.2	0.3	4.5	1	
ΠΚΛΖΟ	LC	36	70	116.4	57	45	40	M8 through	6.8	92.2	9.5	10	31	5.5	12	B-M6F	6	6.2	5.2	6.2	0.3	4.5	1	
HRX30	С	42	90	110.6	72	52	44	M10 through	8.5	84.0	12	14	37	8.2	12	B-M6F	6.2	9.5	5.2	6.2	0.4	4.5	1	
пллоо	LC	42	90	135.1	72	52	44	M10 through	8.5	108.5	12	14	37	8.2	12	B-M6F	6.2	9.5	5.2	6.2	0.4	4.5	1	
HRX35	С	48	100	123.2	82	62	52	M10 through	8.5	92.2	12	10	41.5	8	12	B-M6F	7.2	9.5	5.2	10.2	0.45	5.8	1	
	LC	48	100	151.2	82	62	52	M10 through	8.5	120.2	12	10	41.5	8	12	B-M6F	7.2	9.5	5.2	10.2	0.45	5.8	1	_
HRX45	С	60	120	150.7	100	80	60	M12 through	10.5	115.7	17.3	15	51.5	8.75	16	B-PT1/8	7.5	7.75	5.2	10.2	0.45	6.9	1	
HKA40	LC	60	120	185.7	100	80	60	M12 through	10.5	150.7	17.3	15	51.5	8.75	16	B-PT1/8	7.5	7.75	5.2	10.2	0.45	6.9	1	
HRX55	С	70	140	180.2	116	95	70	M14 through	12.5	143.2	18.2	18	59	11.2	16	B-PT1/8	6.8	9.3	5.2	10.2	0.45	6.8	1	
HKAUU	LC	70	140	229.7	116	95	70	M14 through	12.5	192.7	18.2	18	59	11.2	16	B-PT1/8	6.8	9.3	5.2	10.2	0.45	6.8	1	
HRX65	С	90	170	239.1	142	110	82	M16 through	14.5	195.7	22.3	20	78	18	16	B-PT1/8	8.65	16.6	5.2	10.2	0.45	8.65	1	
ППЛОЈ	LC	90	170	304.1	142	110	82	M16 through	14.5	260.7	22.3	20	78	18	16	B-PT1/8	8.65	16.6	5.2	10.2	0.45	8.65	1	

Note 2) For this model, one guide unit is considered one set. (When using two guides in parallel, two sets will be needed.) Grease nipples are not installed when there is a QZ Lubricator. Contact THK if you want to use a grease nipple for a model with a QZ.

15 THK

		LI	∕I rail din	nensions		Basic load	l rating kN		Static perm	issible mo	ment [∗] kN⋅m		Weight	
H₃	₩1 0	W ₂	M1	F	$d_1 \! imes \! d_2 \! imes \! h$	C ₁₀₀	C₀		1 _∧	\$	I⊫		LM block	LM rail
	-0.05							1 block	2 blocks	1 block	2 blocks	-8-	(kg)	(kg/m)
5	23	23.5	21.5	60	7×11×9	26.3	73.1	0.92	4.84	0.92	4.84	0.57	0.84	3.25
5	23	23.5	21.5	60	7×11×9	30.8	89.3	1.37	6.86	1.37	6.86	0.69	1.03	3.25
5	28	31	23.5	80	9×14×12	39.4	104.7	1.48	7.72	1.48	7.72	1.03	1.48	4.42
5	28	31	23.5	80	9×14×12	48.0	135.2	2.44	12.06	2.44	12.06	1.33	1.93	4.42
6.5	34	33	29	80	9×14×12	56.0	150.1	2.33	11.59	2.33	11.59	1.81	1.93	6.33
6.5	34	33	29	80	9×14×12	68.9	195.7	3.92	18.60	3.92	18.60	2.36	2.55	6.33
8.5	45	37.5	38	105	14×20×17	94.3	250.4	4.85	23.90	4.85	23.90	3.84	3.51	10.9
8.5	45	37.5	38	105	14×20×17	116.0	326.7	8.17	38.44	8.17	38.44	5.01	4.64	10.9
11	53	43.5	44	120	16×23×20	134.5	369.9	8.86	42.34	8.86	42.34	6.86	5.85	15.6
11	53	43.5	44	120	16×23×20	169.5	497.9	15.86	72.70	15.86	72.70	9.24	7.96	15.6
12	63	53.5	53	150	18×26×22	205.5	567.0	18.43	86.49	18.43	86.49	12.27	13.34	22.6
12	63	53.5	53	150	18×26×22	257.0	756.0	32.04	146.69	32.04	146.69	16.35	17.94	22.6

Note 3) Upper surface lubrication hole is for oil lubrication only. Contact THK if you are considering using the

lubrication hole on the top face for grease lubrication.

Static permissible moment 1 block: Static permissible moment value with 1 LM block 2 blocks: Static permissible moment value with 2 blocks in close contact with each other

Overall block length dimension (L) The overall block lengths (L) in the dimension table are for when the

contamination protection accessory symbol is UU or SS. The overall block length (L) will increase if another contamination protection

accessory or lubricator is attached.

*The diagram shows the side nipple pilot holes for when a grease nipple is desired for a product with LaCS or a QZ Lubricator.

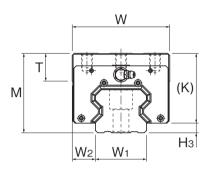
In all other cases, the side nipple pilot holes will not be through holes.

Contact THK if you desire machining for grease nipple mounting.

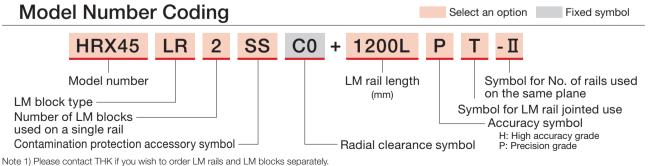
Note 4) • When using oil lubrication, be sure to let THK know the mounting orientation and the position where the pipe fitting will be attached to the LM block. • The removing/mounting jig is not provided as standard. To obtain one, please contact THK.

5元出代 16

Unit: mm

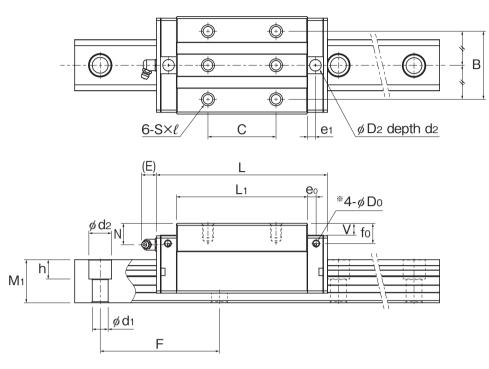


HENNLICH -ŽIJEME TECHNIKOU


o.z. LIN-TECH HENNLICH s.r.o. Českolipská 9, 412 01 Litoměřice

Specification Table

HRX-R/LR


External dimensions							L	.M bloc	k dim	ension	s			Pilot ho	le for sid	e nipple	Greasing	hole on	the top	face*	
Model N	No.	М	w	L	в	С	S×₽	Lı	т	к	Ν	E	Grease nipple	e ₀	f _o	Do	D₂ (O-ring)	v	e ₁	d ₂	
	R	40	48	99.6	35	35	M6×7	75.4	9	35	9.5	12	B-M6F	6	10.2	5.2	6.2	4.3	4.5	1	
HRX25	LR	40	48	116.4	35	50	M6×7	92.2	9	35	9.5	12	B-M6F	6	10.2	5.2	6.2	4.3	4.5	1	
HRX30	R	45	60	110.6	40	40	M8×8	84.0	12	40	11.2	12	B-M6F	6.2	12.5	5.2	6.2	3.4	4.5	1	
	LR	45	60	135.1	40	60	M8×8	108.5	12	40	11.2	12	B-M6F	6.2	12.5	5.2	6.2	3.4	4.5	1	
HRX35	R	55	70	123.2	50	50	M8×10	92.2	18.5	48.5	15	12	B-M6F	7.2	16.5	5.2	10.2	7.45	5.8	1	
	LR	55	70	151.2	50	72	M8×10	120.2	18.5	48.5	15	12	B-M6F	7.2	16.5	5.2	10.2	7.45	5.8	1	
HRX45	R	70	86	150.7	60	60	M10×12.5	115.7	24.5	61.5	18.75	16	B-PT1/8	7.5	17.75	5.2	10.2	10.45	6.9	1	
HKA40	LR	70	86	185.7	60	80	M10×12.5	150.7	24.5	61.5	18.75	16	B-PT1/8	7.5	17.75	5.2	10.2	10.45	6.9	1	
HRX55	R	80	100	180.2	75	75	M12×15	143.2	27.5	69	21.2	16	B-PT1/8	6.8	19.3	5.2	10.2	10.45	6.8	1	
пклоо	LR	80	100	229.7	75	95	M12×15	192.7	27.5	69	21.2	16	B-PT1/8	6.8	19.3	5.2	10.2	10.45	6.8	1	
HRX65	R	100	126	239.1	76	70	M16×20	195.7	29.5	88	28	16	B-PT1/8	8.65	26.6	5.2	10.2	10.45	8.65	1	
HHAOD	LR	100	126	304.1	76	120	M16×20	260.7	29.5	88	28	16	B-PT1/8	8.65	26.6	5.2	10.2	10.45	8.65	1	

Note 2) For this model, one guide unit is considered one set. (When using two guides in parallel, two sets will be needed.) Grease nipples are not installed when there is a QZ Lubricator. Contact THK if you want to use a grease nipple for a model with a QZ.

17 THK

	LM rail dimensions Basic load rating kN Static permissible moment* kN-m								Wei	ght				
H₃	W₁ 0	W ₂	M1	F	d₁×d₂×h	C ₁₀₀	C₀			r			LM block	LM rail
	-0.05							1 block	2 blocks	1 block	2 blocks		(kg)	(kg/m)
5	23	12.5	21.5	60	7×11×9	26.3	73.1	0.92	4.84	0.92	4.84	0.57	0.72	3.25
5	23	12.5	21.5	60	7×11×9	30.8	89.3	1.37	6.86	1.37	6.86	0.69	0.86	3.25
5	28	16	23.5	80	9×14×12	39.4	104.7	1.48	7.72	1.48	7.72	1.03	1.16	4.42
5	28	16	23.5	80	9×14×12	48.0	135.2	2.44	12.06	2.44	12.06	1.33	1.48	4.42
6.5	34	18	29	80	9×14×12	56.0	150.1	2.33	11.59	2.33	11.59	1.81	1.73	6.33
6.5	34	18	29	80	9×14×12	68.9	195.7	3.92	18.60	3.92	18.60	2.36	2.23	6.33
8.5	45	20.5	38	105	14×20×17	94.3	250.4	4.85	23.90	4.85	23.90	3.84	3.20	10.9
8.5	45	20.5	38	105	14×20×17	116.0	326.7	8.17	38.44	8.17	38.44	5.01	4.15	10.9
11	53	23.5	44	120	16×23×20	134.5	369.9	8.86	42.34	8.86	42.34	6.86	5.31	15.6
11	53	23.5	44	120	16×23×20	169.5	497.9	15.86	72.70	15.86	72.70	9.24	7.12	15.6
12	63	31.5	53	150	18×26×22	205.5	567.0	18.43	86.49	18.43	86.49	12.27	12.06	22.6
12	63	31.5	53	150	18×26×22	257.0	756.0	32.04	146.69	32.04	146.69	16.35	16.01	22.6

Note 3) Upper surface lubrication hole is for oil lubrication only. Contact THK if you are considering using the

lubrication hole on the top face for grease lubrication.

Static permissible moment 1 block: Static permissible moment value with 1 LM block 2 blocks: Static permissible moment value with 2 blocks in close contact with each other

Overall block length dimension (L) The overall block lengths (L) in the dimension table are for when the

contamination protection accessory symbol is UU or SS. The overall block length (L) will increase if another contamination protection

accessory or lubricator is attached. *The diagram shows the side nipple pilot holes for when a grease nipple is desired for a product with LaCS or a QZ Lubricator.

In all other cases, the side nipple pilot holes will not be through holes.

Contact THK if you desire machining for grease nipple mounting.

Note 4) • When using oil lubrication, be sure to let THK know the mounting orientation and the position where the pipe fitting will be attached to the LM block. • The removing/mounting jig is not provided as standard. To obtain one, please contact THK.

Unit: mm

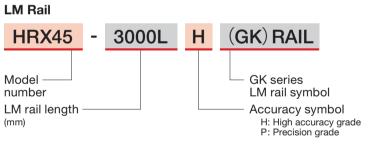
HENNLICH -ŽIJEME TECHNIKOU

o.z. LIN-TECH HENNLICH s.r.o. Českolipská 9, 412 01 Litoměřice

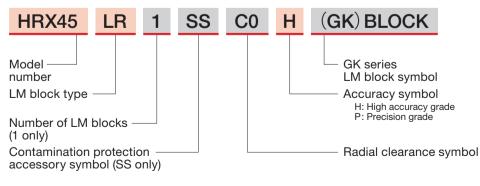
Feature 3 LM Blocks and LM Rails Available for Individual Sale

HRX-GK

LM blocks and LM rails available for individual sale


Flexible combinations, simple, quick

Lineup


Block type	9	HRX25	HRX30	HRX35	HRX45
Standard type	R	0	0	0	0
Standard type	С	0	0	0	0
Long type	LR	0	0	0	0
Long type	LC	0	0	0	0

Please contact THK for HRX55 and HRX65.

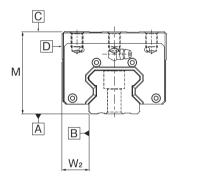
Model Number Coding

LM Block

19 17日代

Select an option Fixed symbol

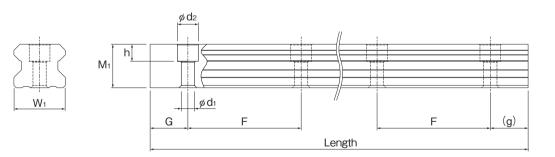
Accuracy Standards


The accuracy of the LM Guide is specified for each model in terms of the dimensional tolerance for height and width, the difference between height and width in a pair, and running parallelism. (High accuracy grade/Precision grade)

Difference in Height (M)

Indicates the difference between the minimum and maximum values of height (M) of each LM Guide used on the same plane in combination.

Difference in Width (W₂)


Indicates a difference between the minimum and maximum values of the width (W₂) between each of the LM blocks, mounted on one LM rail in combination, and the LM rail.

Accuracy standards

M

acy star	luarus		Unit: mm				
	Accuracy (symbol)	High accuracy grade (H)	Precision grade (P)				
Dimens		±0.04	0 -0.04				
Difference in height	Multiple blocks on a singe rail (1 set)	0.015	0.007				
(M) dimension	Multiple blocks on multiple rails (Multiple sets)	0.03	0.025				
Dimens	sional tolerance in width (W ₂)	±0.03	0 -0.03				
C	Difference in width (W2)	0.015	0.007				
Running p	oarallelism of surface C against surface A	See the table on p. 8 running parallelism by	for LM rail length and y accuracy standard.				
Running	parallelism of surface D against surface B	See the table on p. 8 running parallelism by	for LM rail length and y accuracy standard.				
Dimens	sional tolerance in height (M)	±0.04	0 -0.05				
Difference in height	Multiple blocks on a singe rail (1 set)	0.015	0.007				
(M) dimension	Multiple blocks on multiple rails (Multiple sets)	0.03	0.025				
Dimens	sional tolerance in width (W2)	±0.04	0 -0.04				
[Difference in width (W2)	0.015	0.007				
Running	oarallelism of surface C against surface A	See the table on p. 8 running parallelism by	for LM rail length and y accuracy standard.				
Running	parallelism of surface D against surface B	See the table on p. 8 for LM rail length and running parallelism by accuracy standard.					
	Dimension Difference in height (M) dimension Dimension Running (Running (Dimension Difference in height (M) dimension Dimension	Item Dimensional tolerance in height (M) Difference in height (M) Multiple blocks on a singe rail (1 set) Multiple blocks on multiple rails (Multiple sets) Multiple blocks on multiple rails (Multiple sets) Dimensional tolerance in width (W2) Difference in width (W2) Running parallelism of surface C against surface A Running parallelism of surface D against surface B Dimensional tolerance in height (M) Multiple blocks on a singe rail (1 set) Difference in height (M) Multiple blocks on multiple rails (Multiple sets) Dimensional tolerance in width (W2) Difference in height (M) Difference in height (M) Multiple blocks on a singe rail (1 set) Dimensional tolerance in width (W2) Difference in width (W2) Dimensional tolerance in width (W2) Difference in width (W2) Dimensional tolerance in width (W2) Difference in width (W2) Difference in width (W2) Difference in width (W2) Difference in width (W2) Difference in width (W2)	Accuracy (symbol) High accuracy grade (H) Item High accuracy grade (H) Dimensional tolerance in height (M) ±0.04 Difference in height (M) Multiple blocks on a singe rail (1 set) 0.015 Multiple blocks on multiple rails (Multiple sets) 0.03 Dimensional tolerance in width (W2) ±0.03 Difference in width (W2) 0.015 Running parallelism of surface C against surface A See the table on p. 8 running parallelism by surface B Running parallelism of surface D against surface B See the table on p. 8 running parallelism by surface B Difference in height (M) ±0.04 Difference in height (M) ±0.04 Dimensional tolerance in height (M) ±0.04 Difference in width (W2) ±0.04				

I M Rail Dimensions

LM Rail Dimensions Unit: mm									
			LM rail dimensions			Weight			
Model No.	W ₁	M ₁	F	$d_1 \times d_2 \times h$	Length (G, g)	LM rail (kg/m)			
HRX25	23	21.5	60	7×11×9	3000 (20, 40)	3.25			
HRX30	28	23.5	80	9×14×12	3000 (20, 20)	4.42			
HRX35	34	29	80	9×14×12	3000 (20, 20)	6.33			
HRX45	45	38	105	14×20×17	3000 (20, 40)	10.9			

THK 20

Liber Streeters

HRX, HRX (GK) Calculating the Static Safety Factor, Nominal Life, and Service Life Time

Machine

General industrial

machinery

Machine tools

accuracy, and/or rigidity.

fs =

C₀

Pmax

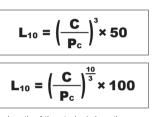
Static Safety Factor

To calculate a load applied to the LM Guide, you must first obtain the average load required to determine the service life and the maximum load needed to determine the static safety factor. In particular, if the system starts and stops frequently, if a cutting load acts on the system, or if a large moment caused by an overhanging load is applied, it may experience an unexpectedly large load. When selecting a model number, make sure that the desired model is capable of supporting the required maximum load (whether stationary or in motion).

The reference values for the static safety factor are shown in the table to the right.

Nominal Life and Service Life Time

Calculating the Nominal Life


The nominal life (L_{10}) is obtained from the following formulas using the basic dynamic load rating (C) and the calculated load acting on the LM Guide (P_c).

For this calculation, the basic dynamic load is to be based on a nominal life of 50 km in case of an LM Guide with balls, or 100 km in case of an LM Guide with rollers.

LM Guide with balls

(Using a basic dynamic load rating based on a nominal life of 50 km)

LM Guide with rollers (Using a basic dynamic load rating based on a nominal life of 100 km)

Reference Values for the Static Safety Factor (fs)

Load conditions

Without vibrations or impacts

With vibrations or impacts

Without vibrations or impacts

With vibrations or impacts

* The reference values of the static safety factor may vary depending on

usage conditions such as environment, lubrication status, mounting surface

L₁₀ : Nominal life (km)

fs : Static safety factor

C₀ : Basic static load rating (N)

P_{max}: Maximum applied load (N)

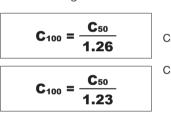
С :Basic dynamic load rating (N)

Lower limit of fs

3 0 to 6 0

4 0 to 7 0

3.0 to 6.0


6.0 to 10.0

Pc : Calculated load (N)

*These nominal life formulas may not apply if the length of the stroke is less than or equal to twice the length of the LM block. When comparing the nominal life (L10), you must take into account whether the basic dynamic load rating was defined based on 50 km or 100 km. Convert the basic dynamic load rating based on ISO 14728-1 as necessary.

ISO-regulated basic dynamic load rating conversion formulas:

- LM Guide with balls (Formula 1)
- LM Guide with rollers (Formula 2)

C₅₀ : Basic dynamic load based on a nominal life of 50 km C₁₀₀ : Basic dynamic load based on a nominal life of 100 km

Calculating the Modified Nominal Life

During use, an LM Guide may be subjected to vibrations and shocks as well as fluctuating loads, which are difficult to detect. In addition, the surface hardness of the raceways, the operating temperature, and having LM blocks arranged directly behind one another will have a decisive impact on the service life.

Taking these factors into account, the modified nominal life (L10m) can be calculated according to the following formulas (3) and (4).

Modified factor a

α =	fH · fT · fc	
u	fw	

- α : Modified factor f_H : Hardness factor
- fc : Contact factor
- fw : Load factor

* See the general catalog for details of the hardness factor, temperature factor, contact factor, and load factor.

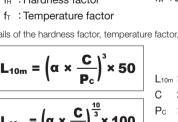
Modified nominal life L10m:

• LM Guide with balls (Formula 3)

• LM Guide with rollers (Formula 4)

- $\mathbf{L}_{10m} = \left(\boldsymbol{\alpha} \times \frac{\mathbf{C}}{\mathbf{P}_{c}} \right)^{3} \times 50$ $\mathbf{L}_{10m} = \left(\alpha \times \frac{\mathbf{C}}{\mathbf{P}_{c}} \right)^{\frac{10}{3}} \times 100$
- L_{10m} : Modified nominal life (km)
- C :Basic dynamic load rating (N)
- Pc : Calculated load (N)

Once the nominal life (L₁₀) has been obtained, the service life time can be obtained using the following formula if the stroke length and the number of cycles are constant.


$$L_{h} = \frac{L_{10} \times 10^{6}}{2 \times \ell_{s} \times n_{1} \times 60}$$

_h : Service life time (h)

- 2s : Stroke lenath (mm)
- n1 : Cycles per minute (min-1)

21

Handling

- (1) Please use at least two people to move any product weighing 20 kg or more, or use a dolly or another method of conveyance. Otherwise, it may cause injury or damage the unit.
- (2) Do not disassemble the parts. This will result in loss of functionality.
- (3) Tilting an LM block or LM rail may cause them to fall by their own weight.
- (4) Take care not to drop or strike the LM Guide. Otherwise, it may cause injury or damage the unit. Even if there is no outward indication of damage, a sudden impact could prevent the unit from functioning properly.
- (5) When installing the LM Guide, be sure not to remove the LM block from the LM rail.
- (6) Placing a hand inside the LM rail mounting hole may lead to the hand being caught between the block and rail and cause injury.
- (7) Wear appropriate safety gear, such as protective gloves and safety shoes, when handling the product.

Precautions on Use

- (1) Prevent foreign materials, such as cutting chips or coolant, from entering the product. Failure to do so could damage the product.
- (2) Prevent foreign materials, such as cutting chips, coolant, corrosive solvents, or water from getting in the product by using a bellows or cover when the product is used in an environment where such a thing is likely.
- (3) Do not use this product if the external temperature exceeds 80°C. If used in excess of this temperature, there is a risk that the resin and rubber parts may deform or become damaged (except for the heat-resistant type).
- (4) If foreign materials such as cutting chips adhere to the product, replenish the lubricant after washing the product.
- (5) Very small strokes can inhibit the formation of an oil film between the raceways and the area of contact for the rollers, resulting in fretting. Therefore, be sure to use a type of grease with high fretting resistance properties if the stroke will be small. We recommend periodically allowing the LM block to stroke a distance roughly equal to its length to help ensure that a film forms between the raceways and rollers.
- (6) Do not forcibly drive a pin, key, or other positioning device into the product. This could create indentations on the rolling surface and impair the product's function.
- (7) If the operation requires the block to be removed, please use a removing/mounting jig. (The removing/mounting jig is not provided as standard. To obtain one, please contact THK.)
- (8) When using a removing/mounting jig, align the ends of the LM rail and the jig and mount the block when the jig and rail are in parallel.
- (9) Mounting the block while it is tilted can lead to contamination by foreign materials, damage to internal components, or dropped rollers.
- (10) Inserting and using the LM block on the LM rail while rollers are missing could lead to premature failure of the product.
- (11) If any balls fall out of the LM block, contact THK. Do not use the product in that condition.(12) If the LM Guide breaks due to an accident or other cause, the block may get dislodged from the rail and fall. For the
- safe use of these products, take precautions such as adding a mechanism to prevent blocks from falling.
- (13) For bolt length, select a length that will leave a clearance at the bolt tip in relation to the effective tap depth.
- (14) If the mounting material lacks sufficient rigidity or accuracy, the bearing load may be focused in one area, and bearing functionality will dramatically decrease. Therefore, carefully consider the rigidity and accuracy of the housing and base, and the strength of the securing bolts.
- (15) If you will be removing the LM block from the LM rail and then replacing the block, an LM block mounting/removing jig that facilitates such installation is available. Contact THK for details.

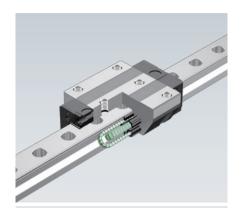
Lubrication

- (1) Thoroughly wipe off anti-rust oil and feed lubricant before using the product.
- (2) Do not mix different lubricants. Even grease containing the same type of thickening agent may, if mixed, interact in an adverse manner due to disparate additives or other ingredients.
- (3) When using the product in locations exposed to constant vibrations or in special environments such as in clean rooms, vacuums, and low/high temperatures, use a lubricant suitable for its use/environment.
- (4) When lubricating products that do not feature a grease nipple or oil hole, directly coat the raceways with lubricant and perform several warm-up strokes to ensure that the grease permeates the interior.
- (5) Grease viscosity can vary depending on the temperature. Please keep in mind that the LM Guide's sliding resistance may be affected by changes in viscosity.
- (6) After lubrication, sliding resistance of the LM Guide may increase due to the stirring resistance of the grease. Be sure to perform a warm-up operation and allow the grease to break in sufficiently before operating the machinery.
- (7) Excess grease may spatter after lubrication. Wipe off spattered grease as necessary.
- (8) Grease deteriorates over time, which decreases the lubricity, so perform regular grease inspections and replenish grease based on frequency of use.
- (9) How often grease should be replenished varies depending on the usage conditions and environment. We recommend greasing the system approximately every 100 km traveled (3 to 6 months). Final greasing interval/amount should be set at an actual machine.
- (10) The lubricant may not reach the raceway if the LM Guide is not installed in a horizontal orientation.
- (11) When adopting oil lubrication, the lubricant may not be distributed throughout the LM system depending on the mounting orientation of the LM block. Contact THK for details.

Storage

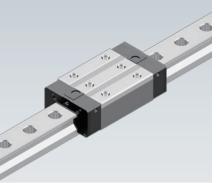
When storing the LM Guide, pack it as designated by THK and store it indoors in a horizontal position away from high or low temperatures and high humidity.

Please note that if the product has been kept in storage for an extended period, the lubricant inside may have deteriorated. Please ensure that you replenish the lubricant before using.

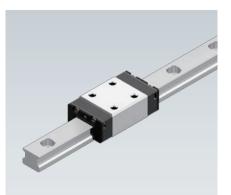

Disposal

The product should be treated as industrial waste and disposed of appropriately.

THK 22



Recommended Products


Caged Roller LM Guide SRG

- Ultra-high rigidity
- Global standard size
- Wide array of options
- Long-term maintenance-free operation

Caged Roller LM Guide SRN

- Ultra-high rigidity
- Thin, low center of gravity type with
- lower product height than the SRG
- Long-term maintenance-free operation

Miniature Roller Type LM Guide HRG

- Smallest roller type ○ High rigidity
- Lightweight

Roller Type LM Guide HRX

• "LM Guide" and " ((), TTD.

- The actual products may differ from the pictures and photographs in this catalog.
 Outward appearances and specifications are subject to change without notice for the purpose of improvement. Please consult with THK before using.
 Although great care has been taken in the production of this catalog, THK will not take any responsibility for damage resulting from typographical errors or omissions.
 For exports of our products and technologies and sales for export, our basic policy is to comply with the Foreign Exchange and Foreign Trade Act and other laws and regulations. Please consult us in advance if you want to export our products by the piece.

All rights reserved

Headquarters 2-12-10 Shibaura, Minato-ku, Tokyo 108-8506 Japan International Sales Department Phone: +81-3-5730-3860

www.thk.com

CATALOG No.426-3E ©THK CO., LTD. 202208