

RADAROVÝ HLADINOMĚR PULSAR® R86

DESCRIPTION

The Pulsar[®] Model R86 radar transmitter is the latest generation of Magnetrol[®] 24 VDC, loop-powered, noncontact radar transmitters. Enhanced performance, proactive diagnostics, and various configuration wizards bring simplicity to an often complex technology.

This latest entry into the radar level measurement field is designed to provide unparalleled performance and ease of use. The 26 GHz PULSAR Model R86 is the perfect complement to the 6 GHz PULSAR Model R96 and Eclipse[®] Model 706 GWR transmitters. Together, this transmitter family offers the ultimate solution set to those difficult industrial process level applications.

ΤΕСΗΝΟΙΟΟΥ

The PULSAR Model R86 radar transmitter is based on pulse burst radar technology combined with equivalent time sampling circuitry. Short bursts of 26 GHz microwave energy are emitted and subsequently reflected from the liquid level surface. Distance is first measured by the equation:

D = Transit time (round-trip)/2.

Liquid level is then calculated based on transmitter configuration.

APPLICATIONS

MEDIA: Liquids and slurries; hydrocarbons to waterbased media (dielectric 1.7–100, 1.4 in stillwell)

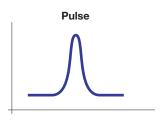
VESSELS: Most process or storage vessels up to rated temperature and pressure. Pits and sumps as well as glass-lined tanks.

CONDITIONS: Virtually all level measurement and control applications including process conditions exhibiting varying specific gravity and dielectric, visible vapors, high fill/empty rates, turbulence, low to moderate foam and buildup.

FEATURES

- Multivariable two-wire, 24 VDC loop-powered transmitter for level, volume, or flow
- Performance not process dependent (changing specific gravity and dielectric have no effect)
- 26 GHz operating frequency offers superior performance with better accuracy and enhanced resolution
- Antenna designs to +400 °C (+750 °F), -1.0 to 160 bar (-14.7 to 2320 psi)
- Range up to 40 m (130')
- Quick connect/disconnect antenna coupling allows vessel to remain sealed
- 4-button keypad and graphic LCD display allow for convenient viewing of configuration parameters and echo curve
- Proactive diagnostics advise not only what is wrong, but also offer troubleshooting tips
- Convenient Setup and Echo Rejection Wizards (Echo Rejection setup is simple, intuitive, and effective)
- SIL 2 suitable (93.2 % SFF, with full FMEDA report available)
- PACT*ware*[™] PC Program and enhanced DTMs for advanced configuration and troubleshooting
- Available with HART[®] or FOUNDATION Fieldbus[™] digital outputs

TECHNOLOGY


PULSE BURST RADAR

The PULSAR R86 is a top-mounted, downward-facing pulse burst radar operating at 26 GHz. Unlike true pulse devices (e.g., ECLIPSE Guided Wave Radar) which transmit a single, sharp (fast rise-time) waveform of wide-band energy (Figure 1), PULSAR emits short bursts of 26 GHz energy (Figure 2) and measures the transit time of the signal reflected off the liquid surface.

Distance is measured utilizing the equation:

Distance equals the Speed of light multiplied by the transit time divided by two (*Distance* = $C \times Transit Time/2$). Level is then calculated by factoring in tank height and other configuration information (Figure 3). The reference point for distance and level calculations is the sensor reference point (bottom of an NPT thread, top of a BSP thread, or face of the flange).

The exact level measurement is extracted from false target reflections and other background noise via the use of sophisticated signal processing. The new PULSAR Model R86 circuitry is extremely energy efficient so no duty cycling is necessary to accomplish effective measurement.

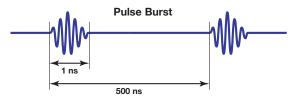


Figure 2

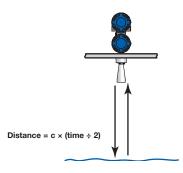


Figure 3

Radar applications are characterized by three basic conditions:

- Dielectric (process medium)
- Distance (measuring range)
- Disturbances (turbulence, foam, false targets, multiple reflections)

The PULSAR R86 Radar transmitter is offered with several horn antenna sizes and configurations:

- 1 1/2"
- 2"
- 3"
- 4"

Maximum measuring range (distance) is measured from the sensor reference point (bottom of NPT thread, gasket face of BSP thread, or gasket face of flange) to the bottom of the tank. Refer to Figure 4.

Since larger horns yield stronger signals and smaller beam angles, the 4" horn antenna should ideally be used to ensure the best possible performance in all operational conditions. However, as that is often impractical, other antenna sizes are available.

The chart (Figure 5) shows the maximum measuring range of each antenna based on dielectric and turbulence.

Obstructions, noise and media buildup can drastically decrease reliable measurement. Although it is theoretically possible to measure a liquid level on the antenna, liquid should not be allowed closer than:

For Metal Antennas:

50 mm (2") from the bottom of the antenna or 300 mm (12") from the sensor reference point (whichever is greater). Refer to Figure 6.

For Encapsulated Horn Antennas:

50 mm (2") from the bottom of the antenna or 300 mm (12") from the launch point (whichever is greater). Refer to Figure 6.

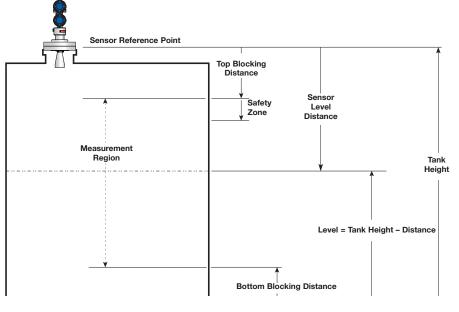
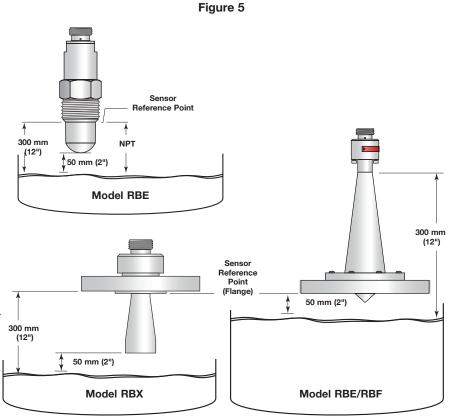



Figure 4

	R86 Maximum Recommended Measuring Range in meters (feet)								
		Turbule	Turbulence None or Light Turbulence Medium or Heavy						
	Dielectric >	1.7 – 3	3 – 10	10 – 100	1.7 – 3	3 – 10	10 – 100		
type	1 1/2" Horn	9 (30)	12 (40)	18 (60)	3 (10)	5 (16)	8 (26)		
	2" Horn	10 (33)	15 (49)	20 (66)	3 (10)	6 (20)	10 (33)		
Antenna	3" Horn	15 (50)	20 (66)	30 (98)	4 (13)	9 (30)	12 (40)		
Ant	4" Horn	20 (66)	30 (98)	40 (130)	7 (23)	12 (40)	15 (50)		

ΜΟUΝΤΙΝG

The PULSAR Model R86 Radar transmitter can be mounted on a vessel using a variety of process connections. Generally either a threaded or flanged connection is used.

ΙΟ Ο Α ΤΙΟ Ν

Ideally, the Radar transmitter should be mounted 1/2 radius from center of the tank providing an unobstructed signal path to the liquid surface where it can illuminate (with microwave energy) the largest possible surface area. A conservative recommendation is to not install in center of tank top or within 45 cm (18") of tank wall. Tank walls may produce reflections that must be minimized during field configuration. Refer to Figure 7.

BEAM ANGLE

The various antenna sizes exhibit different beam patterns. Figure 9 shows the beam spread for all PULSAR Model R86 antennas. Ideally the beam pattern should illuminate the maximum liquid surface with minimum striking of other objects in the vessel including the tank wall. Use these drawings to determine the optimum installation location.

OBSTRUCTIONS

Almost any object that falls within the beam pattern will cause reflections that may be misinterpreted as a false liquid level. Although the PULSAR Model R86 has a powerful Echo Rejection routine, all possible precautions should be taken to minimize false target reflections with proper installation location. Refer to Figures 8 & 9.

	Beam Spread, W @-3dB; m (ft)							
	De	an opreau, v	/v ⊜ 00D, m	(19				
Antenna Beam Angle (∝)	1 1/2" Horn 20°	2" Horn 18°	3" Horn 11°	4" Horn 9°				
Distance, D ; m (ft)								
3 (10)	1,1 (3.5)	1,0 (3.2)	0,6 (1.9)	0,5 (1.6)				
6 (20)	2,1 (7.1)	1,9 (6.3)	1,2 (3.9)	0,9 (3.1)				
9 (30)	3,2 (10.6)	2,9 (9.5)	1,7 (5.8)	1,4 (4.7)				
12 (40)	4,2 (14.1)	3,8 (12.7)	2,3 (7.7)	1,9 (6.3)				
15 (50)	5,3 (17.6)	4,8 (15.8)	2,9 (9.6)	2,4 (7.9)				
18 (60)	6,3 (21.2)	5,7 (19.0)	3,5 (11.6)	2,8 (9.4)				
20 (65)		6,3 (20.6)	3,9 (12.5)	3,1 (10.2)				
30 (98)			5,8 (18.9)	4,7 (15.4)				
40 (130)				6,3 (20.5)				

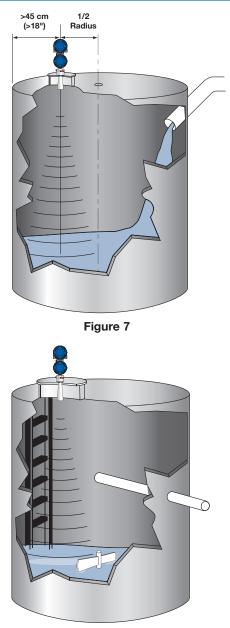


Figure 8

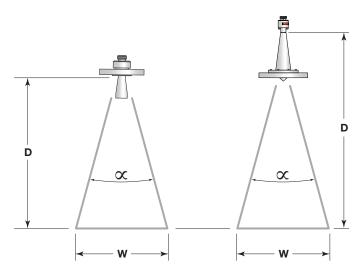
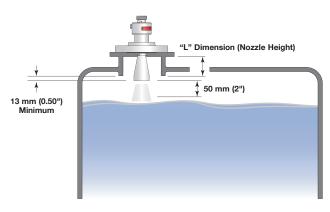



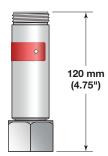
Figure 9

ΜΟUΝΤΙΝG

NOZZLES

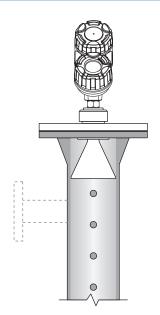
Improper installation in a nozzle creates "ringing" (undesired signals) which can adversely affect measurement. The antenna should always be mounted such that the active section of the antenna is a minimum of 13 mm (0.5") below the nozzle. Be sure to include any nozzle dimension that may extend down inside the vessel. Refer to Figure 10. Antenna extensions are offered to allow the PULSAR Model R86 transmitter to work reliably in nozzles with an "L" dimension up to 1.8 m (72").

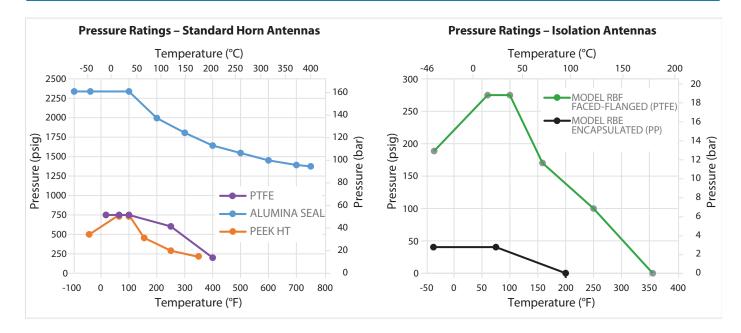
ORIENTATION


The PULSAR Model R86 transmitter utilizes circular polarization. This means that the microwave beam does not need to be manually adjusted (rotated) during commissioning as is necessary with other radar transmitters. The result is a much simpler start-up process.

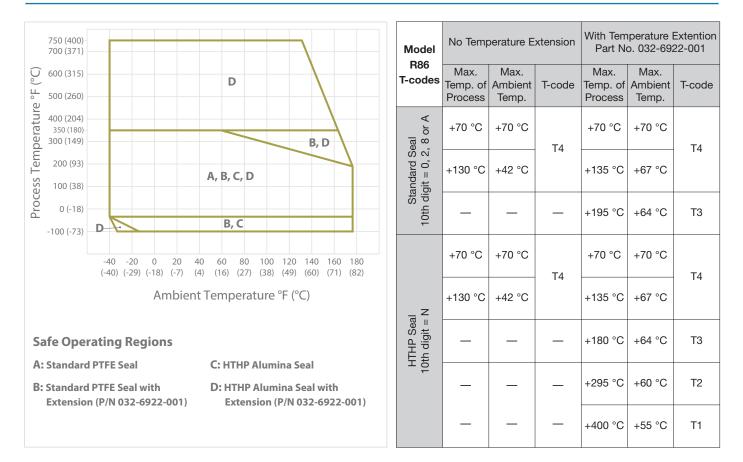
TEMPERATURE EXTENSION

HEAT EXTENSION FOR USE WITH HIGH TEMPERATURE/HIGH PRESSURE ANTENNAS


To limit the temperature exposure to the transmitter in high temperature applications, a heat extension (P/N 032-6922-001) is required between the antenna and transmitter. Refer to "Operating Temperature Range" chart on page 6.

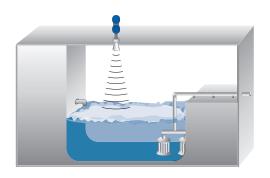


STANDPIPES AND STILLWELLS


The PULSAR Model R86 can be mounted in a standpipe or stillwell but certain items must be considered:

- Metal stillwells only: Inside diameter 45-200 mm (1 3/4"-8").
- Diameter must be consistent throughout length; no reducers or gaps.
- Use only horn antennas sized to pipe ID; 38–101 mm (1 1/2"-4"); 8" pipe can use 4" horn.
- Stillwell length must cover complete range of measurement (i.e., liquid must be in stillwell).
- Welds should be smooth.
- Vents: holes < 3 mm (0.125") diameter, slots < 3 mm (0.125") width.
- If an isolation valve is used, it must be a full port ball valve with an ID equal to the pipe diameter.
- Configuration must include a non-zero entry for pipe ID parameter.

OPERATING TEMPERATURE RANGE

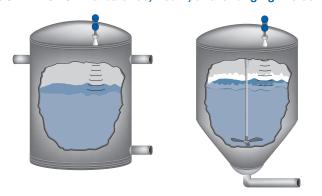

PULSE BURST RADAR

STORAGE AND INTERMEDIATE HOLDING TANKS

CONDITIONS – Calm Surfaces

ENCLOSED SUMPS

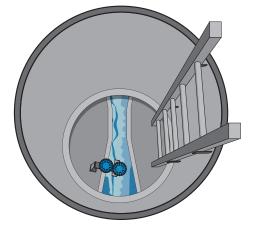
CONDITIONS – Turbulence, Foam, and Changing Dielectric


R E A C T O R S CONDITIONS – Turbulence and Foam

CHAMBERS AND BYPASS

MIXING AND BLENDING VESSELS CONDITIONS – Turbulence, Foam, and Changing Dielectric

OPEN CHANNEL FLOW APPLICATIONS


Extensive Selection of Primary Flow Elements

With a total of 35 flume and weir curves stored in the electronics, it would be hard to find an open channel flow application that cannot be handled by the R86 transmitter. Unusual flow applications can readily be accomplished through the use of either the 20-point Custom Table or the Generic Discharge Flow Equation which allows a direct entry of unique flow equations.

Dual Flow Totalizers

Two 7-digit flow totalizers are provided for recording flow in cubic feet, gallons, million gallons, liters, million liters, or cubic meters. One totalizer is resettable and the other is nonresettable. Several multipliers are selectable to allow for proper scaling. Totalizer time is also recorded to show how long each totalizer has been recording flow. ENCLOSED FLUMES AND WEIRS

CONDITIONS – Turbulence and Changing Dielectric

NOTE: For optimal accuracy, mount the transmitter a minimum of 75 cm (30") above the flow element (this is dependent on type and size of the flow element). Consult factory for assistance on this dimension.

PROBLEMATIC APPLICATIONS

GUIDED WAVE RADAR ALTERNATIVE

Some applications can be problematic for Non-Contact Radar. The following are examples of when Guided Wave Radar is recommended.

- Extremely low dielectric media ($\epsilon_r < 1.7$)
- Very weak reflections from the liquid surface (particularly during turbulence) can cause poor performance.
- Tanks heavily cluttered with false targets (mixers, pumps, ladders, pipes, etc.)
- During times of very low liquid levels of low dielectric media, the metal tank bottom may be detected, which can deteriorate performance.
- Foam can either absorb or reflect the microwave energy depending upon the depth, dielectric, density and wall thickness of the bubbles. Due to typical variations in the amount (depth) of foam, it is impossible to quantify performance. It may be possible to receive most, some or none of the transmitted energy.
- Extremely high liquid level (Overflow) conditions when liquid very near the antenna can cause erroneous readings and measurement failure.
- Interface applications

Refer to ECLIPSE Model 706 Guided Wave Radar bulletin BE 57-106.

Min. Recommended Not Recommended Maximum Maximum Material Temperature Pressure For Use In For Use In Code Temp. Ketones (MEK, acetone), skydrol fluids, amines, anhy-1 51.7 bar @ +20 °C -40 °C drous ammonia, low molecular Viton® VX065 0 +180 °C @ 16 bar General purpose, ethylene (750 psi @ +70 °F) (-40 °F) weight esters and ethers, hot (+356 °F @ 232 psi) hydrofluoric or chlorosulfuric acids, sour HCs Inorganic and organic acids Black liquor, hot water/steam, (including HF and nitric), +200 °C @ 16 bar 51.7 bar @ +20 °C -40 °C hot aliphatic amines, ethylene Kalrez[®] 4079 2 aldehydes, ethylene, glycols, (+400 °F @ 232 psi) (750 psi @ +70 °F) (-40 °F) oxide, propylene oxide, molten organic oils, silicone oils, vinegar sodium, molten potassium sour HCs Inorganic and organic acids (2) (including HF and nitric), Simriz SZ485 aldehydes, ethylene, glycols, Black liquor, Freon 43, Freon 75, +200 °C @ 16 bar 51.7 bar @ +20 °C -20 °C 8 Galden, KEL-F liquid, molten (formerly organic oils, silicone oils, vinegar, (+400 °F @ 232 psi) (750 psi @ +70 °F) (-4 °F) Aegis PF128) sour HCs, steam, amines, ethylsodium, molten potassium ene oxide, propylene oxide, NACE applications Inorganic and organic acids (including hydro fluids and nitric), Hot water/steam, hot aliphatic +200 °C @ 16 bar -40 °C 51.7 bar @ +20 °C aldehydes, ethylene, organic oils, Kalrez® 6375 А amines, ethylene oxide, propylene (+400 °F @ 232 psi) (750 psi @ +70 °F) (-40 °F) glycols, silicone oils, vinegar, oxide sour HCs General high temperature/high Hot alkaline solutions HF acid. +400 °C @ 94.8 bar 160 bar @ +20 °C -70 °C pressure applications, Alumina Ν media with ph>12, direct exposure (+750 °F @ 1375 psi) (2320 psi @ +70 °F) (-100 °F) hydrocarbons, full vacuum to saturated steam (hermetic), ammonia, chlorine

O-RING (SEAL) SELECTION CHART

1 +180 °C (+350 °F) for options with hazardous locations approval.

② Maximum +150 °C (+300 °F) for use on steam.

These devices are in compliance with the RED-directive 2014/53/EU, the EMC directive 2014/30/EU, the PED-directive 2014/68/EU, the ATEX directive 2014/34/EU and RoHS directive 2011/65/EU.

Explosion Proof US/Canada: FM17US0108X / FM17CA0055X Class I, Div 1, Group B, C, D, T4T1 Class I, Zone 0/1 AEx/Ex ia/db IIB i + H2 T4T1 Ga/Gb Class I, Zone 1 AEx/Ex db ia IIB + H2 T4T3 Gb Ta = -40 °C to +70 °C Type 4X, IP67 Flame Proof ATEX - FM17ATEX0027X II 1/2 G Ex ia/db IIB + H2 T4T1 Ga/Gb II 2 G Ex db ia IIB + H2 T4T3 Gb Ta = -40 °C to +70 °C IP67 IEC- IECEx FMG 17.0012X Ex ia/db IIB + H2 T4T3 Gb Ta = -40 °C to +70 °C IP67	Non- Incendive US/Canada: FM17US0108X / FM17CA0055X Class I, II, III, Div 2, Group A, B, C, D, E, F, G, T4T1 Class I, Zone 2 AEx nA ia IIC T4T1 Class I, Zone 2 Ex nA ia IIC T4T1 Ta = $-15 \text{ °C } to +70 \text{ °C}$ Type 4X, IP67 ATEX - FM17ATEX0028X II 3 G Ex nA IIC Gc T4T1 Ta = $-15 \text{ °C } to +70 \text{ °C}$ IP67 IEC - IECEx FMG 17.0012X Ex nA IIC Gc T4T1 Ta = $-15 \text{ °C } to + 70 \text{ °C}$ IP67
Intrinsically Safe US/Canada: FM17US0108X / FM17CA0055X Class I, II, III, Div 1, Group A, B, C, D, E, F, G, T4T1 Class I, Zone 0 AEx ia IIC T4T1 Class I, Zone 0 Ex ia IIC T4T1 Ga Ta =-40 °C to +70 °C Type 4X, IP67 ATEX - FM17ATEX0027X: II 1 G Ex ia IIC T4T1 Ga Ta = -40 °C to +70 °C IP67 IEC - IECEx FMG 17.0012X: Ex ia IIC T4T1 Ga Ta = -40 °C to +70 °C IP67	Dust Ignition Proof US/Canada: FM17US0108X / FM17CA0055X Class II, III, Div 1, Group E, F, and G, T4T1 Ta = -15 °C to +70 °C Type 4X, IP67 ATEX – FM17ATEX0027X: II 2 D Ex ia tb IIIC T100 °C Db Ta = -15 °C to +70 °C IP67 IEC – IECEx FMG 17.0012X: Ex ia tb IIIC T100 °C Db Ta = -15 °C to +70 °C IP67

FM3600:2011, FM3610:2010, FM3611:2004, FM3615:2006, FM3616:2011, FM3810:2005, ANSI/ISA60079-0:2013, ANSI/ISA 60079-1:2015, ANSI/ISA 60079-11:2013, ANSI/ISA 60079-15:2012, ANSI/ISA 60079-26:2011, NEMA 250:2003, ANSI/IEC 60529:2004, C22.2 No. 0.4:2009, C22.2 No. 0.5:2008, C22.2 No. 30:2007, C22.2 No. 94:2001, C22.2 No. 213:2012, C22.2 No. 1010.1:2009, CAN/CSA 60079-0:2011, CAN/CSA 60079-1:2011, CAN/CSA 60079-11:2014, CAN/CSA 60079-15:2012, C22.2 No. 60529:2005, EN60079-0:2012, ANSI/IEC 60079-0:2012, ANSI/IEC 60079-1:2014, EN60079-11:2012, EN60079-15:2010, EN60079-26:2015, EN60079-31:2014, EN60529+A1:2000+A2:2013, IEC60079-0:2011, IEC60079-1:2014, IEC60079-15:2011, IEC60079-26:2006, IEC60079-31:2008

"This equipment with chargeable non-conductive parts, e.g. enclosure's paint and antenna use PTFE, Co-polymer Polypropylene or Noryl En265, is provided with a warning label referring to the safety measures that must be taken if there is electrostatic charging during operation. For use in hazardous area, the equipment and side to be installed, e.g. tank, must be connected to earth and be attention to not only the measuring object, e.g. liquids, gases, powders and etc., but also the related conditions, e.g. tank container, vessel and etc. (According to IEC 60079-32-1)."

FCC (ID# LPN-R86) Compliance Statement:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

Telecommunications Approvals

Agency	In-Tank	Out-of-Tank
FCC	47 CFR, Part 15, Subpart C, Section 15.209 Unintentional Radiators	47 CFR, Part 15, Subpart C, Section 15.256
ISED	RSS-211	RSS-211
ETSI	EN 302 372 V2.1.1 (2016-12)	EN 302 729 V2.1.1 (2016-12)

TRANSMITTER SPECIFICATIONS

FUNCTIONAL/PHYSICAL

System Design		
Measurement Principle		Pulse burst radar 26 GHz
Input		
Measured Variable		Level, determined by the time-of-flight of radar pulse reflections
Span		0,2 to 40 m (0.5' to 130')
Output		
Туре		4 to 20 mA with HART: 3.8 mA to 20.5 mA useable (per NAMUR NE43)
		Foundation Fieldbus [™] : H1 (ITK Ver. 6.2.0)
Resolution	Analog:	.003 mA
Digit	al Display:	1 mm
Loop Resistance	GP/IS:	591 ohms @ 24 VDC and 22 mA
XP/FI	ameproof:	500 ohms @ 24 VDC and 22 mA
Diagnostic Alarm		Selectable: 3.6 mA, 22 mA (meets requirements of NAMUR NE 43), or HOLD last output
Diagnostic Indication		Meets requirements of NAMUR NE107
Damping		Adjustable 0-10
User Interface		
Keypad		4-button menu-driven data entry
Display		Graphic Liquid Crystal Display
Digital Communication		HART Version 7–with Field Communicator, FOUNDATION Fieldbus [™] AMS, or FDT
		DTM (PACT <i>ware™</i>), EDDL
Menu Languages Transm	nitter LCD:	English, French, German, Spanish, Russian, Portuguese, Polish
	HART DD:	English, French, German, Spanish, Russian, Chinese, Portuguese, Polish
Host System FOUNDATION	Fieldbus™	English
PRO	FIBUS PA:	English
Voltage (Measured at instrument t	erminals)	HART: General Purpose (Weather proof)/Intrinsically Safe/Explosion-proof:
		11 VDC minimum at terminals under certain conditions (refer to Manual BE58-603)
		FOUNDATION Fieldbus [™] and PROFIBUS PA: 9 to 17.5 VDC
		FISCO, FNICO, General Purpose (Weatherproof)
Housing		
Material		IP67/die-cast aluminum A413 (<0.6 % copper); optional stainless steel
Net/Gross Weight	Aluminum:	2,0 kg (4.5 lbs.)
Stain	less Steel:	4,5 kg (10.0 lbs.)
Overall Dimensions		Refer to page 12
Cable Entry		1/2" NPT or M20
SIL 2 Hardware (Safety Integrity	/ Level)	Safe Failure Fraction = 93.2 % (HART only)
		Functional Safety to SIL 2 as 1001 in accordance with IEC 61508
ENVIRONMENT		(Full FMEDA report available upon request)
Operating Temperature		General purpose: -40 °C to +80 °C (-40 °F to +175 °F);
		Agency approved: -40 °C to +70 °C (-40 °F to +160 °F);
		LCD viewable -20 °C to +70 °C (-5 °F to +160 °F)
Storage Temperature		-45 °C to +85 °C (-50 °F to +185 °F)
Humidity		0–99 %, non-condensing
Electromagnetic Compatibility		Meets CE requirement (EN 61326) and NAMUR NE 21
Surge Protection Shock/Vibration		Meets CE EN 61326 (1000V)
		ANSI/ISA-S71.03 Class SA1 (Shock); ANSI/ISA-S71.03 Class VC2 (Vibration)

o.z. MERES, HENNLICH s.r.o. | meres@hennlich.cz | +420 416 711 203 | www.hennlich.cz/meres

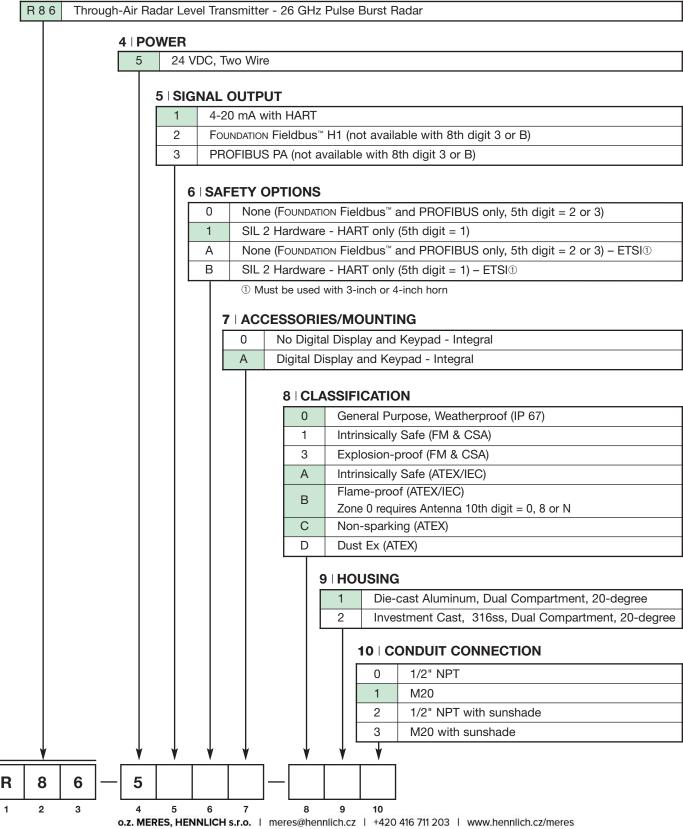
PERFORMANCE

Reference Conditions		Reflection from ideal reflector at +20 °C (+70 °F)		
Linearity		±3 mm (0.1") or 0.1 % of tank height (whichever is greater)		
Measured Error		±3 mm (0.1") or 0.1 % of tank height (whichever is greater) (Performance will degrade slightly within 1.5 m (60") of antenna)		
Resolution		1mm or 0.1"		
Repeatability		±3 mm (0.1") or 0.05% of tank height (whichever is greater)		
Response Time		<2 seconds (configuration dependent)		
Initialization Time		< 30 seconds		
Ambient Temperature E	ffect Digital	Average 3 mm (0.12") / 10 K, max of \pm 10 mm (0.4") over the entire temperature range -40 °C to +80 °C (-40 °F to +175 °F)		
	Analog	Current Output (additional error with reference to 16 mA span)		
		Average 0.03 % / 10 K. max 0.45 % over entire temperature range -40 °C to +80 °C (-40 °F to +175 °F)		
Maximum Rate of Chan	ige	450 cm (180")/minute		
FOUNDATION Fieldbus [™]	ITK Version	6.2.0		
	H1 Device Class	Link Master (LAS)—selectable ON/OFF		
	H1 Profile Class	31PS, 32L		
	Function Blocks	(8) Al, (3) Transducer, (1) Resource, (2) PID (1) Arithmetic, (1) Signal Characterizer, (1) Input Selector, (1) Integrator		
	Quiescent Current	17 mA		
	Execution Time	10 ms (15 ms PID Block)		
	Device Revision	01		
	DD Version	0x0		
PROFIBUS PA	Device Revision	0x101A		
Digital Comm	unication Protocol	Version 3.02 MBP (31.25 kbits/sec)		
	Function Blocks	(1) x Physical Block, (8) x Al Blocks, (3) x Transducer Block		
	Quiescent Current	15 mA		
	Execution Time	15 ms		

ANTENNA SPECIFICATIONS

FUNCTIONAL/PHYSICAL

Antenna Material	316 SS, Hastelloy C, Polypropylene or PTFE
Process Seal Material	PEEK, PTFE with O-rings or Alumina
Maximum Process Temperature	+400 °C @ 94,8 bar (+750 °F @ 1375 psi)
Maximum Process Pressure	-1,0 to 160 bar @ +20 °C (-14.7 to 2320 psi @ +70 °F)
Vacuum Service	Hermeticity to <5 × 10 ⁻⁷ cc/sec helium


Minimum Dielectric (application dependent) 1,7 (1,4 with stillwells)

QUICK RESPONSE CELL (QRC)

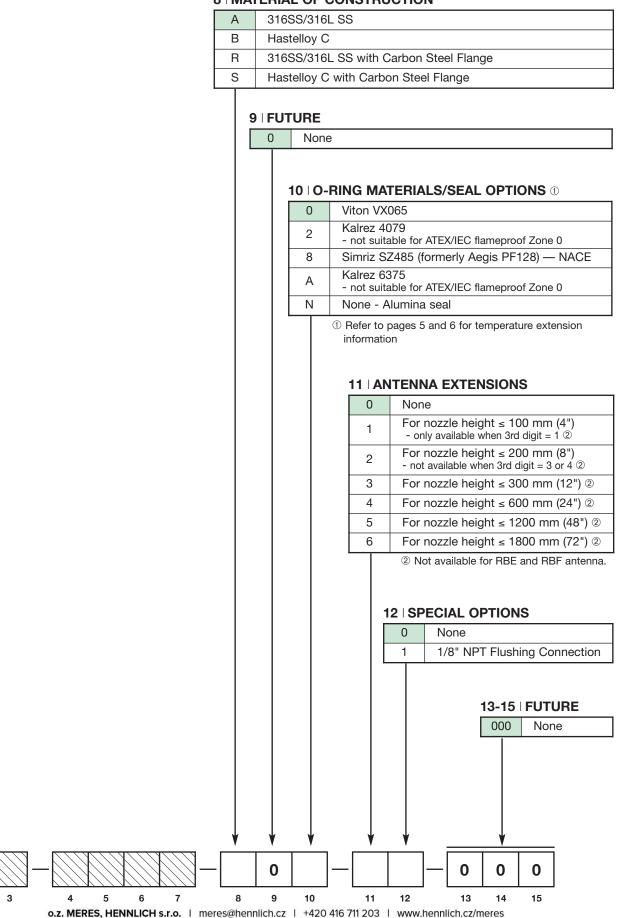
Several models are available for extra quick shipment, within max. 15 days after factory receipt of purchase order, through the Quick Response Cell (QRC). To take advantage of QRC, simply match the green model number codes.

QRC delivery is limited to a maximum of 10 units per order. Contact your local representative for lead times on larger volume orders, as well as other products and options.

1-3 | MEASUREMENT SYSTEM

1-2 | TECHNOLOGY

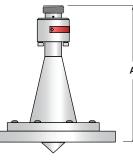
RB	PULSA	R Radar Antennas - 26 GHz									
	3 CO	NFIGURATION/STYLE									
	1	1 1/2" Horn									
	2	2" Horn									
	3	" Horn (not available when digit 4 = 3, 4 or D and digit 11 = 0)									
	4	4" Horn (not available when digit 4 = 3, 4, 5, D or E and digit 11 = 0)									
	E	Encapsulated – Polypropylene (available only when 4th and 5th digits = 3	1, 43, 53, 63, 73, DA, EA, FA, G								
	F	Faced Flange – PTFE Coated Wetted Surfaces (available only when 4th a	and 5th digits = 43, 53, DA, EA								
		4-5 PROCESS CONNECTION - SIZE/TYPE ① 31 1 1/2" NPT thread 41 2" NPT	T Thread								
		32 1 1/2" BSP (G 1 1/2") thread 42 2" BSF	P (G 2") Thread								
		ASME Flanges EN Flanges									
		43 2" 150# ASME raised face flange DA DN 50	, PN 16 EN 1092-1 Type								
		44 2" 300# ASME raised face flange DB DN 50	, PN 25/40 EN 1092-1 Type								
		45 2" 600# ASME raised face flange DD DN 50	, PN 63 EN 1092-1 Type								
		53 3" 150# ASME raised face flange EA DN 80	, PN 16 EN 1092-1 Type								
		54 3" 300# ASME raised face flange EB DN 80	, PN 25/40 EN 1092-1 Type								
		55 3" 600# ASME raised face flange ED DN 80	, PN 63 EN 1092-1 Type								
		63 4" 150# ASME raised face flange FA DN 10	0, PN 16 EN 1092-1 Type								
		64 4" 300# ASME raised face flange FB DN 10	0, PN 25/40 EN 1092-1 Type								
		65 4" 600# ASME raised face flange FD DN 10	0, PN 63 EN 1092-1 Type								
		73 6" 150# ASME raised face flange GA DN 15	0, PN 16 EN 1092-1 Type								
		74 6" 300# ASME raised face flange GB DN 15	0, PN 25/40 EN 1092-1 Type								
		75 6" 600# ASME raised face flange GD DN 15	0, PN 63 EN 1092-1 Type								
		① 3" RBE are Raised Face Lap Joint Flange 6 CONSTRUCTION CODES 0 Industrial K ASME B31.1 L ASME B31.3 M ASME B31.3 & NACE MR0175 / MR0103 N NACE MR0175 / MR0103 7 FLANGE OPTIONS 0 None									
♥ B 2	_ ¥	$-\underbrace{1}_{4 5 6 7} -\underbrace{0}_{8 9 10} -\underbrace{11 12}_{11 12}$	- 13 14 15 ch.cz/meres								

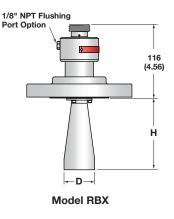

R

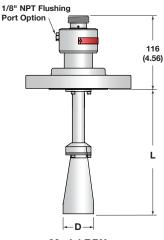
1

В


2

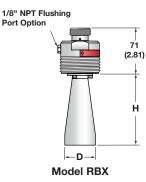

8 | MATERIAL OF CONSTRUCTION


MM (INCHES)

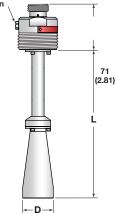


Model RBE

Model RBX

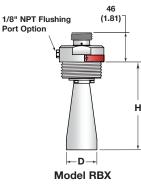

POLYPROPYLENE AND PTFE FACED-FLANGE ANTENNA

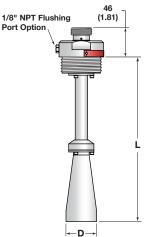
	Model Nr	Process		Horn Size				
	3th Digit	Connection	1 1/2"	2"	3"			
		1 1/2" NPT	122 (4.79)	—	—			
Dim. A	_ E	2" 150#	—	100 (3.94)	—			
	Encapsulated Polypropylene Horn	3" 150#	—	_	268 (10.56)			
		4" 150#	_	_	289 (11.39)			
		6" 150#	—	_	291 (11.45)			
	F	2" 150#	—	100 (3.94)	—			
Dim. A	Faced Flange PTFE Horn	3" 150#	_	—	119 (4.69)			


HORN ANTENNA FLANGE CONNECTION

	Мо	del Nr	3rd Digit (Horn Size)					
	11th Digit (Extension)		1 (1 1/2")	I (1 1/2") 2 (2")		4 (4")		
Dim. H	0	(None)	81 (3.2)	114 (4.5)	216 (8.5)	292 (11.5)		
	1	(4")	152 (6)	—	—	—		
	2	(8")	203 (8)	211 (8.3)	—	—		
Dim. L	3	(12")	305 (12)	305 (12)	315 (12.4)	366 (14.4)		
	4	(24")	610 (24)	610 (24)	610 (24)	610 (24)		
	5	(48")	1219 (48)	1219 (48)	1219 (48)	1219 (48)		
	6	(72")	1829 (72)	1829 (72)	1829 (72)	1829 (72)		
Dim. D			40 (1.56)	48 (1.89)	75 (2.95)	95 (3.74)		

NPT Connection

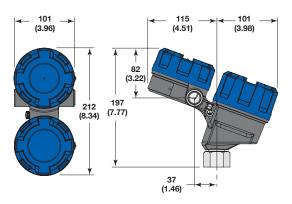



1/8" NPT Flushing Port Option

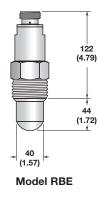
Model RBX

BSP Connection

Model RBX


HORN ANTENNA SCREWED CONNECTION

	Model	Nr 11th		Model Code Digit 4 & 5								
	Digit (Extension)				2 (2")		3 (3")		4 (4")			
			NPT	BSP	NPT	BSP	NPT	BSP	NPT	BSP		
Dim. H	0	(None)	81 (3.2)	106 (4.2)	114 (4.5)	139 (5.5)	—	—	—	—		
	1	(4")	152 (6)	177 (7)	—	—	—	—	—	—		
	2	(8")	203 (8)	228 (9)	211 (8.3)	236 (9.3)	_	_	—	—		
Dim. L	3	(12")	305 (12)	330 (13)	305 (12)	330 (13)	315 (12.4)	340 (13.4)	366 (14.4)	391 (15.4)		
Dini. L	4	(24")	610 (24)	635 (25)	610 (24)	635 (25)	610 (24)	635 (25)	610 (24)	635 (25)		
	5	(48")	1219 (48)	1244 (49)	1219 (48)	1244 (49)	1219 (48)	1244 (49)	1219 (48)	1244 (49)		
	6	(72")	1829 (72)	1854 (73)	1829 (72)	1854 (73)	1829 (72)	1854 (73)	1829 (72)	1854 (73)		
	Dim. D		40 (*	1.56)	48 (*	1.89)	75 (2	2.95)	95 (3	3.74)		


o.z. MERES, HENNLICH s.r.o. | meres@hennlich.cz | +420 416 711 203 | www.hennlich.cz/meres

MM (INCHES)

TRANSMITTER

NPT Connection

QUALITY ASSURANCE - ISO 9001

THE QUALITY ASSURANCE SYSTEM IN PLACE AT MAGNETROL GUARANTEES THE HIGHEST LEVEL OF QUALITY DURING THE DESIGN, THE CONSTRUCTION AND THE SERVICE OF CONTROLS. OUR QUALITY ASSURANCE SYSTEM IS APPROVED AND CERTIFIED TO **ISO 9001** AND OUR TOTAL COMPANY IS COMMITTED TO PRO-

OUR QUALITY ASSURANCE SYSTEM IS APPROVED AND CERTIFIED TO **ISO 9001** AND OUR TOTAL COMPANY IS COMMITTED TO PRO-VIDING FULL CUSTOMER SATISFACTION BOTH IN QUALITY PRODUCTS AND QUALITY SERVICE.

PRODUCT WARRANTY

ALL MAGNETROL ELECTRONIC AND ULTRASONIC LEVEL CONTROLS ARE WARRANTED FREE OF DEFECTS IN MATERIALS AND WORK-MANSHIP FOR 18 MONTHS FROM THE DATE OF ORIGINAL FACTORY SHIPMENT. IF RETURNED WITHIN THE WARRANTY PERIOD; AND, UPON FACTORY INSPECTION OF THE CONTROL, THE CAUSE OF THE CLAIM IS DETERMINED TO BE COVERED UNDER THE WARRANTY; THEN, MAGNETROL INTERNATIONAL WILL REPAIR OR REPLACE THE CONTROL AT NO COST TO THE PURCHASER (OR OWNER) OTHER THAN TRANSPORTATION. MAGNETROL SHALL NOT BE LIABLE FOR MISAPPLICATION, LABOR CLAIMS, DIRECT OR CONSEQUENTIAL DAMAGE OR EXPENSE ARISING FROM THE INSTALLATION OR

MAGNETHOL SHALL NOT BE LIABLE FOR MISAPPLICATION, LABOR CLAIMS, DIRECT OR CONSEQUENTIAL DAMAGE OR EXPENSE ARISING FROM THE INSTALLATION OR USE OF THE EQUIPMENT. THERE ARE NO OTHER WARRANTIES EXPRESSED OR IMPLIED, EXCEPT, SPECIAL WRITTEN WARRANTIES COVERING SOME MAGNETROL PRODUCTS.

	BULLETIN N°: EFFECTIVE:	BE 58-103.5 JULY 2021
UNDER RESERVE OF MODIFICATIONS	SUPERSEDES:	January 2020

